Pokazywanie postów oznaczonych etykietą sen i marzenia senne. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą sen i marzenia senne. Pokaż wszystkie posty

środa, 21 czerwca 2017

Sen a Padaczka


Podział snu na stadia jest pomocny nie tylko przy rozpatrywaniu jego fizjologii i patologii u ludzi czy w modelach zwierzęcych. Jest również bardzo istotny w schorzeniach na pierwszy rzut oka niezwiązanych bezpośrednio ze snem. Wzajemne oddziaływania niektórych chorób na strukturę snu oraz snu na nasilenie pewnych objawów chorobowych jest znane od lat, a w epileptologii pomaga stawiać rozpoznania.

Padaczka to przewlekłe zaburzenie czynności mózgu cechujące się nawracającymi napadami. Klasycznie dzieli się na napady częściowe (ogniskowe) i uogólnione. Te pierwsze dzielą się dodatkowo na napady częściowe proste (bez zaburzeń świadomości), napady częściowe złożone (przebiegające z zaburzeniami świadomości) oraz napady częściowe wtórnie uogólnione. Osobnym, ale bardzo ważnym zagadnieniem jest stan padaczkowy, czyli napad przedłużający się powyżej 30 minut (motorycznie skąpoobjawowy – jedynie ze zmąceniem lub zaburzeniem pamięci), charakteryzujący się obecnością dwóch lub więcej kolejnych toniczno-klonicznych napadów drgawkowych, po których nie następuje całkowity powrót funkcji poznawczych, oraz stałą aktywnością drgawkowa trwającą min. 10 minut (u dzieci 5 minut).

Podstawowym badaniem w celu wykrycia cech napadowości jest EEG w czuwaniu ze standardowymi aktywacjami: fotostymulacją, hiperwentylacją i reakcją zatrzymania. Fotostymulację wykonuje się przy oczach otwartych lub zamkniętych, w zależności od procedur pracowni i typu pacjenta. Polega ona na świeceniu lampą stroboskopową w oczy badanego różnymi częstotliwościami błysków w celu stwierdzenia fotowrażliwości. Zabieg ten może prowokować napad padaczkowy, podobnie jak hiperwentylacja, która polega na minimum 3 minutowym powolnym głębokim oddychaniu przez usta. Z kolei w reakcji zatrzymania pacjent na polecenie technika wykonującego badanie EEG naprzemiennie otwiera i zamyka oczy. Prawidłowa odpowiedź na tego typu stymulację powinna polegać na blokowaniu tylnego rytmu dominującego (najczęściej rytmu alfa) w momencie otwierania oczu.

W obrazie EEG rozpoznaje się tzw. grafoelementy padaczkokształtne, czyli cechy zapisu EEG charakterystyczne dla napadów padaczkowych. Do wyładowań padaczkokształtnych widocznych w obrazie EEG należą iglice (potencjały ostre trwające 20-70 ms), fale ostre (potencjały ostre trwające 70-200 ms) oraz ich połączenia z falami wolnymi o częstotliwościach mieszczących się w zakresie czynności delta (0,5-3,5 Hz) i theta (4-7,5 Hz). Wśród grafoelementów padaczkokształtnych wyróżnić możemy m.in. zespół iglica-fala wolna, w którym po wysokonapięciowej iglicy (powyżej 200 µV) następuje fala wolna, zwykle o wyższej amplitudzie, zespół fala ostra-fala wolna oraz zespół wieloiglica z towarzyszącą falą wolną (fotografia na górze strony).

Fot. Przykłady grafoelementów padaczkokształtnych: A) zespół iglica - fala wolna; B) zespół fala ostra - fala wolna (objaśnienia w tekście)
Gdy 20-25 minutowe badanie EEG w czuwaniu ze standardowymi aktywacjami nie ujawnia cech napadowości, a wywiad jest obciążający, konieczne staje się sięgnięcie po „silniejszy oręż”. Neurofizjolog wykonuje wtedy badanie we śnie spontanicznym (w godzinach „pracy” – czyli klasyczna drzemka). Jeśli to nie skutkuje, badanie wykonywane jest we śnie po deprywacji, a ostatecznie we śnie fizjologicznym w trakcie 24-godzinnego Holtera EEG. Jest to spowodowane faktem, że sen fizjologiczny, wymuszony, bądź przerywany, stanowią silny bodziec prowokujący do wystąpienia napadu w wielu postaciach padaczki.

Każde ze wspomnianych wyżej badań ma swoje wady i zalety, a kolejność ich wykonania u pacjenta jest najczęściej taka jak opisana powyżej. Związane jest to głównie z uciążliwością dla pacjenta oraz większym nakładem czasu dla wykonującego badanie i opisującego je. Sen spontaniczny w dzień jest trudny do osiągnięcia u starszego dziecka lub dorosłego pacjenta. Dlatego metoda ta z reguły odpada. Sprawdza się natomiast często u młodszych dzieci, które w zaciszu gabinetu często spontanicznie zasypiają w obecności rodzica. Czasami zaśnięcie jest wymuszone zmęczeniem spowodowanym płaczem dziecka, zestresowanego elektrodami na głowie i obecnością w obcym środowisku. Tym sposobem mamy upieczone dwie pieczenie na jednym ogniu – dziecko hiperwentyluje (płacz to naturalna hiperwentylacja) i zasypia. Jest to korzystne dla badania, gdyż mały pacjent z reguły nie chce współpracować i przeprowadzenie hiperwentylacji (nawet przy pomocy kolorowego wiatraczka, na który powinien dmuchać) bywa nieosiągalne. Deprywacja poza lecznictwem zamkniętym jest trudna do osiągnięcia - a raczej do zweryfikowania jej poprawnego wykonania. Na oddziale szpitalnym, pacjent poddany deprywacji spędza noc z pielęgniarkami w dyżurce, które pilnują, aby nie zasnął. Pacjent ambulatoryjny może zwyczajnie oszukiwać personel medyczny, że nie spał, podczas gdy faktycznie przespał część nocy. Nieświadomy wagi deprywacji może wprowadzać w błąd, wstydząc się przyznać, że zasnął w swoim domowym łóżku (bez nadzoru medycznego) i przyszedł „częściowo wyspany”, przez co badanie może nie wykazać typowych zmian padaczkowych.

Trochę inaczej wygląda deprywacja u dzieci. Oto jeden ze schematów tej metody. Dzieci do 2 r.ż. niepoddawane są deprywacji. Dzieci 2-5 lat kładą się spać o swojej stałej godzinie, ale budzone są o 4:00. Dzieci 5-8 lat kładą się spać 1 godzinę później niż zwykle i również budzone są o 4:00. Dzieci 8-12 lat kładą się maksymalnie o 24:00 i budzone są o 4:00, zaś powyżej 12 r.ż. nie śpią całą noc – tak jak dorośli. Gdy badanie po deprywacji nic nie wnosi, konieczne staje się badanie holterowskie. Wykonujemy je w warunkach szpitalnych. Na tym kończy się standardowa diagnostyka padaczek. W przypadku niepotwierdzenia napadowości powyższe badania wykonuje się za jakiś czas (najczęściej po kolejnych napadach). Jeśli dalej EEG nic nie wykryje pozostaje neurochirurgia (metody inwazyjne - elektrody głębinowe) wykonywane rutynowo w dużych ośrodkach klinicznych w Polsce, lub nieinwazyjne – MEG (magnetoencefalografia), czym jeszcze w Polsce nie dysponujemy.

Dlaczego Holter jest skuteczniejszą techniką w wyłapywaniu zmian napadowych niż deprywacja snu? Okazuje się, że najwięcej zmian napadowych występuje we śnie wolnofalowym, a konkretnie w jego pierwszych dwóch stadiach (NREM I i II) i do tego w pierwszym cyklu. Tymczasem sen po deprywacji nie jest snem fizjologicznym, tylko rodzajem snu „na długu”. Skutkuje to tym, że pacjent zasypiając może wchodzić natychmiast w NREM III/IV, w którym zmian jest bardzo mało albo nie ma ich wcale. Jeszcze gorzej, gdy zmęczony i „słaniający” się z niewyspania pacjent zasypia od razu REM-em, co również się przydarza. Są wtedy nikłe szanse na wyłapanie jakichkolwiek grafoelementów padaczkokształtnych, gdyż sen REM hamuje aktywność padaczkową! Mechanizm tych uwarunkowań jest pochodną pracy elektrycznej mózgu. Stadium NREM jest stanem zsynchronizowanej aktywności neuronów, co w pewnym sensie obniża próg pobudliwości dla wyładowań padaczkowych. Główną bioelektryczną cechą napadów jest bowiem synchronizacja wyładowań neuronów, co w odprowadzeniu (elektroda zbiera potencjały z neuronów powierzchni 2,5-3 cm2) sumuje się w regularny potencjał odróżniający się od tła zapisu sprzed wyładowania. NREM I i II są jeszcze na tyle niskie w zapisie (w sensie woltażu), że może zachodzić swoisty „rezonans” z ogniskiem padaczkowym. Sen NREM III/IV ma już na tyle wysoką amplitudę woltażu, że wyładowanie napadowe może się nie przebić przez aktywność elektryczną zsynchronizowanych we śnie neuronów w tej fazie snu (wysokonapięciowe fale delta). Sen REM to stan desynchronizacji korowej czynności elektrycznej, co siłą rzeczy działa hamująco na szerzenie się zsynchronizowanego napadu. Zdarza się jednak, że i w tej fazie można rzadko uwidocznić w zapisie wyładowania padaczkowe.

Poniżej, w zarysie przedstawione zostaną przykłady zespołów prowokowanych deprywacją snu, snem fizjologicznym oraz wybudzeniem. Absence („wyłączenie” pacjenta) trwający minimum 3 sekundy powoduje u takich pacjentów luki w pamięci krótkotrwałej, tzn. osoba nie jest w stanie wrócić do czynności wykonywanej przed napadem. Modelowym testem potwierdzającym, jest (z reguły w czasie hiperwentylacji) liczenie na głos w czasie badania EEG lub uderzanie długopisem o kartkę papieru na stole (u dzieci nieumiejących jeszcze liczyć). W/w czynności są przerywane, a pacjent wygląda jak zastygły w bezruchu mim - i w zależności od czasu trwania napadu następuje kontynuacja czynności lub stan spoczynku, ale z wyraźnym nawrotem świadomości. W zapisie EEG charakterystyczne są zespoły iglica-fala 3 Hz.

Na początek przybliżę padaczki uogólnione (w tym te przebiegające z napadami nieświadomości) a zakończę padaczkami częściowymi:

1) Dziecięca padaczka z napadami nieświadomości (pyknolepsja, petit mal) – zespół padaczkowy z bardzo częstymi napadami, około 100/dzień. Polegają one na przerywaniu wykonywanej czynności, krótkim „zapatrzeniu się”. Występuje duża wrażliwość na hiperwentylację. Zmiany w EEG narastają we śnie NREM. W miarę pogłębiania się snu zespoły zwalniają częstotliwość, aż do całkowitego ustąpienia.

2) Młodzieńcza padaczka miokloniczna (zespół Janza; Janz i Christian 1957) to padaczka całego życia. Może wystąpić pierwotnie lub wyewoluować z opisanego powyżej zespołu. Oprócz charakterystycznych wyłączeń i uogólnionych napadów mioklonicznych, zwykle w rok po pierwszym epizodzie pojawiają się (klasyczne) napady toniczno-kloniczne. Oba typy napadów zdarzają się zazwyczaj do 2 godzin po wybudzeniu.

3) Młodzieńcza padaczka z napadami nieświadomości. Napady zdarzają się rzadziej, bo do kilku razy na dobę, z szybszym początkiem (3,5-4 Hz) i wolniejszym końcem (2,5 Hz). Bywają prowokowane hiperwentylacją. Napady mogą występować po przebudzeniu lub w okresie odpoczynku/drzemki.

4) Padaczka napadów nieświadomości z miokloniami (Tassinari i Bureau 1985). Napadom wyłączeń świadomości towarzyszą mioklonie, głównie kończyn górnych. Trwają długo – 10-60 sekund. Oprócz hiperwentylacji i fotostymulacji, mogą być prowokowane wybudzeniem lub deprywacją snu; narastają we śnie NREM.

5) Zespół Lennoxa-Gastauta (1969) rozwija się na podłożu uszkodzonego wcześniej mózgu, przed 8 r.ż. Hiperwentylacja może, ale nie musi aktywować wyładowań. Tym, co wybitnie nasila zmiany jest sen wolnofalowy i to do tego stopnia, że stadia snu są trudne do odróżnienia. Wygląda to jak stan padaczkowy we śnie. Jest to ciężki zespół. U 90% dzieci występują stany padaczkowe, a wielokrotne napady atoniczne u tego samego dziecka są jego znakiem szczególnym.

6) Padaczka z ciągłymi wyładowaniami zespołów iglica-fala wolna w czasie snu wolnofalowego (Patry, Lyagoubi, Tassinari 1971). Zaczyna się w wieku 5-7 lat, ustępuje spontanicznie po 15 r.ż. Im bardziej nasilone lub dłużej trwające objawy (brak leczenia, lub nieskuteczne leczenie) tym większy trwały deficyt intelektualny. W stanie czuwania zmiany zlokalizowane są w okolicy czołowo-skroniowej lub centralno-skroniowej. We śnie rejestruje się w zasadzie stan padaczkowy snu wolnofalowego: w I cyklu do 100%, w następnych 70-80%. Sen REM wyhamowuje wyładowania. Występuje naprzemienność stadiów snu, przy czym ich cechy morfologiczne ulegają zatarciu. Pomocne w ich rozpoznaniu okazują się jedynie metody polifizjograficzne (np. EMG, EOG), co oczywiście nie jest standardową praktyką.

7) Padaczka z napadami uogólnionymi toniczno-klonicznymi okresu budzenia (Gowers, Janz, Loiseau 1953). Klasyczne napady grand mal (to te znane z różnych filmów, drgawki po upadku epileptyka) występują po obudzeniu. Jednak dotyczy to wszystkich „pobudek” zarówno porannych, nocnych przebudzeń w trakcie snu, jak i po drzemkach w dzień. Tym, co wyraźnie nasila napady jest tu więc nie brak snu (deprywacja) ale odpoczynek po śnie fizjologicznym. Zmiany nasilają się bowiem w okresie relaksu np. w weekend („napady dnia wolnego”). Na szczęście są dość rzadkie, 1-2 napady w ciągu roku.

8) Zespół nabytej afazji z padaczką (zespół Landaua-Kleffnera 1957). Charakteryzuje się napadami częściowymi, mogącymi wtórnie się uogólniać. Zaczyna się przed 7 r.ż., ustępuje przed 15-tym. Zaburzenia rozumienia mowy pojawiają się nagle i postępują nawet do agnozji słuchowej i całkowitego deficytu ekspresji mowy. W stanie czuwania wyładowania rejestruje się nad ośrodkami mowy (odprowadzenia centralne i skroniowe), a we śnie wolnofalowym trwa bioelektryczny stan padaczkowy. Sen REM blokuje lub wyraźnie zmniejsza zmiany uogólnione.

9) Częściowa padaczka dziecięca z wyładowaniami w okolicy potylicznej o wczesnym początku (Panayiotopoulos 1987). Cechuje się jednostronnymi lub uogólnionymi drgawkami występującymi głównie w nocy lub po przebudzeniu. Przed 12 r.ż. napady ustępują niezależnie od ciężkości przebiegu.

10) Częściowa padaczka dziecięca z wyładowaniami w okolicy potylicznej o późnym początku (Gastaut 1950). Napady są bardzo rzadkie, najczęściej po obudzeniu. Zaczynają się zaniewidzeniem lub krótkimi omamami wzrokowymi przechodzącymi w drgawki – najczęściej połowicze. Typowe zmiany w zapisie występują w odprowadzeniach potylicznych i/lub tylnoskroniowych. Charakterystyczne zmiany bioelektryczne narastają w ciemności, zaś wyciszają się przy skupieniu wzroku na punkcie świetlnym i przy otwarciu oczu (reakcja zatrzymania). Sen aktywuje zmiany u 80% chorych. Do 15 r.ż. napady ustępują.

Jako ciekawostkę, warto też wspomnieć o jeszcze jednym rodzaju padaczki, wskazującym na silny związek tej choroby ze snem, czyli o tzw. nocnej padaczce czołowej (NFLE, z jęz. ang. nocturnal frontal lobe epilepsy). Diagnoza NFLE często jest mylona z niektórymi parasomniami należącymi do grupy tzw. zaburzeń wybudzenia, jak lęki nocne, somnambulism czy wybudzenie z dezorientacją (inaczej upojenie przysenne lub zespół Elpenora), z uwagi na wiele podobieństw w historii klinicznej pacjentów oraz podobne objawy. Prawdopodobnie NFLE jak i wspomniane parasomnie dzielą wspólne podłoże genetyczne. W genetycznej odmianie nocnej padaczki czołowej (ADNFLE, z jęz. ang. autosomal dominant NFLE) stwierdzono mutacje w genach kodujących podjednostki receptorów acetylocolinergicznych, a jak wiadomo, układ cholinergiczny odgrywa bardzo ważną i dobrze poznaną rolę w regulacji snu i czuwania/pobudzenia. Za wspólnym genetycznym podłożem przemawia też fakt, że historia zaburzeń wybudzenia jest istotnie częstsza u osób z NFLE oraz ich krewnych. Niektórzy autorzy badań wysuwają hipotezę mówiąca, że występowanie parasomnii we wczesnym dzieciństwie może rozwinąć się w epilepsję w wieku dorosłym.

Jak ważny dla zdrowia jest pełny sen nikogo nie trzeba przekonywać. We śnie konsolidują się ślady pamięciowe, przebudowują się stare połączenia synaptyczne i utrwalają nowe. Niewyspanie wpływa negatywnie na koncentrację, czas reakcji, czy przyswajanie nowych informacji i programów motorycznych. Bywa jednak tak, że pomimo odpowiedniej ilości snu w/w procesy również są znacznie zakłócone, a rozwój intelektualny wyhamowuje. Tak dzieje się, gdy sen zakłócony jest przez powtarzające się regularne, a przede wszystkim częste, napady padaczkowe/stany padaczkowe. Ich ilość we śnie, oraz częstość pojawiania się, a także długość trwania choroby wyraźnie korelują z trwałym deficytem funkcji OUN.

Przykładowo, w padaczce napadów nieświadomości z miokloniami, w momencie wystąpienia pierwszych napadów (2-12 r.ż.) około 50% dzieci ma już wcześniej stwierdzony niedorozwój umysłowy. Jednak w miarę trwania choroby notuje się u nich dalsze obniżenie możliwości intelektualnych. Proces destrukcji intelektualnej notuje się także u dzieci bez niedorozwoju. W zespole Lennoxa-Gastauta, na podłożu wcześniej uszkodzonego mózgu rozwija się wieloczynnikowa encefalopatia. Przebieg choroby czyni jednak dalsze spustoszenie w funkcjonowaniu OUN. Chorzy z tym zespołem rzadko dożywają trzydziestki (średni czas przeżycia to kilkanaście lat od momentu rozpoznania). Około 40% pacjentów nie rozwija mowy, zaś około 20% nie opanowuje umiejętności samodzielnej lokomocji. Tylko u około 5% ustępują napady, lecz bez cofnięcia deficytów poznawczych. W przypadku padaczki z ciągłymi wyładowaniami zespołów iglica-fala wolna we śnie wolnofalowym następuje upośledzenie procesów intelektualnych, które jest proporcjonalne do czasu trwania choroby. Występują także zaburzenia koncentracji uwagi i upośledzenie czynności ruchowej. Z kolei zespół Landaua-Kleffnera to klasyczny przykład, gdy częstość napadów we śnie jest proporcjonalna do regresji mowy. Przy skutecznym leczeniu zmiany cofają się. Jednak w pewnym odsetku przypadków zmiany ogniskowe utrwalają się, co znacznie pogarsza rokowanie.

Jak więc wyraźnie widać, zespoły padaczkowe, które manifestują się we śnie sieją spustoszenie w umyśle dotkniętych nimi dzieci. Walka z napadami sprowadza się wtedy często do utrzymania poziomu intelektualnego na stanie sprzed rozwoju choroby, rzadziej na poprawie funkcji poznawczych. Powyższe przykłady pokazują, że nawracające napady prowokowane niewyspaniem i/lub zmęczeniem, lepiej rokują dla epileptyka, niż napady zdarzające się głównie we śnie. Pośrednio świadczy to o wielkiej roli, jaką sen odgrywa w rozwoju czynności intelektualnych i konsolidacji pamięci oraz o słabym mechanizmie zabezpieczającym neurony we śnie przed synchronizacją nieprawidłowych wyładowań. Być może jest to swoista pułapka ewolucyjna, która pozwoliła korze wydajnie zapisywać informacje w mechanizmie długotrwałego wzmocnienia synaptycznego (LTP) na drodze synchronizacji wyładowań oddziałujących neuronów, jednocześnie rezerwując na tę metodę zbyt małe krańcowe granice parametrów czasowo-napięciowych, które stosunkowo łatwo przekroczyć przy sprzyjających okolicznościach?

Podstawy EEG z mini atlasem - A. J. Rowan, E. Tolunsky

Atlas EEG i semiologii napadów padaczkowych – B. Abou-Khalil, K. E. Misulis

Padaczka. Aspekty behawioralne w teorii i praktyce – S. C. Schachter, G. L. Holmes, D. G. A. Kasteleijn-Nolast Trenite

Materiały szkoleniowe Ośrodka Akson Dr G. Rusek

Wichniak A. Parasomnie. https://psychiatria.mp.pl/ data wejścia 11-06-2017

Derry CP, Duncan S. 2013. Sleep and Epilepsy. Epilepsy and Behavior 26, 394-404.

Foto: Piotr Cękiel, CC BY-SA 2.0 

piątek, 18 listopada 2016

Neuromotoryka ruchów gałek ocznych we śnie



Oczy, a ściślej siatkówki, są pierwszym elementem w układzie wzrokowym. Ich najważniejszymi elementami dla systemu poznawczego są plamki żółte. To one zapewniają ostre i kolorowe widzenie. Gałki oczne wykonują dwa rodzaje ruchów: sakkady, czyli ruchy gwałtownie zmieniające punkt fiksacji, oraz ruchy stabilizujące obraz (ruchomego lub nieruchomego) obiektu, np. fiksacja, wodzenie, wergencja. Mają one odmienną prędkość i odmienny czas reakcji. Ich następowe, naprzemienne występowanie można prześledzić fizjologicznie, kontrolując ruch oczu pasażera obserwującego otoczenie samochodu podczas jazdy. Jest to tzw. oczopląs optokinetyczny, gdzie faza szybka jest sakkadą - zaś wolna ruchem wodzenia. Same sakkady ze względu na sterowanie ośrodkowe dzielimy na dwie kategorie: wolicjonalne (korowe) i mimowolne (pniowe).

W celu wykonywania swoich zadań, oczy mają unikalny zewnętrzny aparat ruchowy – inny w porównaniu z systemem pozostałych mięśni ciała (szkieletowych). Stopień skomplikowania budowy, precyzji oraz płynności i szybkości ruchów mięśni oczu jest tym bardziej zdumiewający, że dotyczy struktur o całe rzędy wielkości mniejszych niż pozostałe mięśnie poprzecznie prążkowane. Włókna te mają jedynie średnicę rzędu 10 µm (9 i 11 µm odpowiednio dla obu typów włókien opisanych w dalszej części) przy 100 µm dla mięśni szkieletowych. Zaś stosunek ich unerwienia (liczby włókien nerwowych do mięśniowych) wynosi 1:8, w porównaniu ze średnio 1:125 w pozostałych mięśniach.

Zewnętrzne mięśnie gałkoruchowe fizjologicznie dzielą się na dwa rodzaje włókien: fazowe i toniczne. Te ostatnie występują tylko w mięśniówce gałki ocznej, w przeciwieństwie do włókien fazowych, które występują we wszystkich mięśniach prążkowanych poprzecznie. Brzusiec każdego z 6 mięśni gałkowych (4 prostych i 2 skośnych), zbudowany jest na przekroju z dwóch warstw: wewnątrz są włókna fazowe, na zewnątrz włókna toniczne, które przechodzą w siebie dość płynnie tworząc włókna mieszane. Włókna fazowe, grubsze na przekroju, wykonują ruchy sakkadyczne. Włókna toniczne utrzymują spojrzenie na wprost, wykonują powolne ruchy wodzenia oraz ruchy wergencyjne.

Różnice między programowaniem ruchów sakkadowych oraz śledzenia, zbieżności i rozbieżności (wergencyjnych) zostały omówione w jednym z wcześniejszych artykułów (RE(M)asumując ruchowe funkcje oczu). W tym zostanie omówiony mechanizm i udział poszczególnych typów ruchów gałek ocznych w rozbiciu na fazy snu. Według klasycznych już reguł polisomnografii (PSG), ustalonych przez Rechtschaffena i Kalesa (R-K 1968), sen dzielimy na REM (sen z szybkimi ruchami gałek ocznych, lub inaczej paradoksalny) oraz NREM (wolnofalowy). Na sen NREM składają się 4 stadia, z których dwa ostatnie (NREM 3 i 4) bywają łączone i opisywane razem jako N3. Zasady kodowania snu szczegółowo opisują, od którego momentu rejestrowania zapisu funkcji fizjologicznych, mamy do czynienia z konkretną jego fazą. Każda z faz ma bowiem (u zdrowych ludzi!) niepowtarzalny zestaw kombinacji cech zapisu badanych parametrów, pozwalających wprawnemu praktykowi rozpoznać je i kodować w postaci hipnogramu. Jednym z owych parametrów jest rejestracja ruchów oczu (elektrookulografia, EOG) za pomocą dwóch elektrod umiejscowionych „ukośnie” w zewnętrznych kącikach oczu – lewej 1 cm poniżej, a prawej 1 cm powyżej kącika oka. Jak istotny jest gałkowy pomiar ruchu we śnie, najlepiej uzasadnia nazwa fazy REM.

Rozróżniamy kilka typów ruchów oczu we śnie. Są one powiązane z konkretnymi stadiami snu. W fazie zasypiania (NREM 1 lub N1) mogą wystąpić: mruganie (przy podbudzeniach, co w slangu elektroencefalografistów oznacza momenty w zapisie, gdy w czasie zasypiania przy rozpadzie czynności podstawowej np. bodziec zewnętrzny nagle wytrąca pacjenta z N1 - widać to w zapisie powrotem czynności podstawowej i przy sprzyjających warunkach ponownym szybkim zasypianiem, czyli przejściem w N1) oraz bardziej charakterystyczne – wolne ruchy gałek ocznych (SREM). SREM w slangu elektroencefalografistów bywa określane jako „pływanie” oczu. Określenie to doskonale oddaje charakterystykę zapisu ruchu gałek na składce PSG rejestrującej EOG (a w klasycznym EEG w odprowadzeniach przednich). Krzywe zapisu z oczu synchronicznie oddalają się lub przybliżają łagodnie od i do linii izoelektrycznej (i siebie). Zapis jest płynny, a fazy wznoszenia i opadania krzywych są jednakowo rozciągnięte w czasie jak sinusoidy.

Zupełnie inaczej wygląda rejestracja w fazie REM. Zapisy z oka prawego i lewego nie są regularne. W czasie czuwania, takie zjawisko nosi w okulistyce nazwę dysmetrii sakkad i wiąże się z niedokładną fiksacją. Sakkady odśrodkowe oraz te o większej amplitudzie są częściej hipometryczne (niedoszacowane, za krótkie) niż dośrodkowe i te o mniejszej amplitudzie. Osoby zupełnie zdrowe wykonują nawet do 10-23 % sakkad hipometrycznych. Fazy wznoszenia i opadania takich krzywych w EOG (ujemne i dodatnie) są bardziej strome niż w fazie NREM 1 i 2 (SREM), zakończone często wierzchołkiem (o ostrym rysunku), o krótszym cyklu, niekiedy jakby nakładające się na siebie (poszarpane), gdzie jeden ruch przerywany jest i/lub zastępowany nagle innym. W stanie czuwania takie ruchy towarzyszą przerzucaniu uwagi wzrokowej z jednego obiektu na drugi (refiksacja), lub poprawkom fiksacji po niedokładnie przeprowadzonej sakkadzie (sakkady korekcyjne). We śnie określane jest to jako P-REM – czyli składowa fazowa stadium REM.

Rozkładając „klasyczną” sakkadę (w stanie czuwania) na czynniki pierwsze, wyróżnia się część fazową pobudzenia sakkadowego (szarpnięcie) i część statyczną zmiany napięcia mięśni gałkoruchowych (fiksację). Gdy w stanie czuwania obiekt szybko poruszający się pojawia się w polu widzenia, jest natychmiast przechwytywany przez plamkę przy pomocy sakkady (sakkada fiksacyjna). Sakkada wolicjonalna ma taką samą charakterystykę ruchu, tylko nie przechwytuje konkretnego obiektu w pościgu, a przeskakuje do domniemanego celu.

W momencie ruchu szarpnięcia „oko jest ślepe”. Rozpoznaje obraz dopiero po ufiksowaniu, na co potrzeba korze mózgowej czasu. Gdy jednak obiekty pojawiają się zbyt szybko w polu widzenia i w zbyt krótkich odstępach czasu, oko jest szarpane sakkadami sterowanymi z ośrodków pniowych, bez możliwości ufiksowania, co uniemożliwia ośrodkom kory wzrokowej dokładne rozpoznanie wzorców z pola widzenia, ze względu na zbyt małą ilość czasu. Taka podprogowa impulsacja wzrokowych ośrodków kojarzeniowych, wraz z samoistną (niezależną i równoległą) pracą kory, może wpływać na treść składników przetwarzanych w pamięci roboczej (treść marzenia sennego REM?). Pobudzenie podprogowe bywa, skądinąd, wykorzystywane komercyjnie w reklamach i propagandzie lub w celach naukowych w doświadczeniach psychologicznych.

Reasumując, ruchy SREM występują w stadium snu NREM 1 oraz okresowo w NREM 2. Ruchy P-REM występują jedynie w stadium REM. Jeśli przyjrzeć się charakterystyce ruchów oczu w czuwaniu i we śnie, dostrzeżemy wyraźnie podobne wzorce. Ruchy wodzenia/śledzenia i zbieżności/rozbieżności wyglądają jak SREM, zaś P-REM przypominają sakkady podlegające refiksacjom i korektom.

Nie powinno to dziwić, gdyż aparat wykonawczy (mięśnie) jest ten sam w czuwaniu i we śnie, a jego parametry pracy są niezmienne, bo zakodowane w kodzie genetycznym każdego zdrowego osobnika. Zmienny jest natomiast stopień funkcjonalności tworu siatkowatego, a w konsekwencji kory mózgu - więc podobna praca mięśni gałkowych w stanie czuwania i we śnie, nie musi wcale oznaczać takiej samej pracy neuronów mózgu odpowiedzialnych za funkcje poznawcze, na które ruchy oczu wpływają. Inaczej mówiąc te same ruchy nie muszą być przejawem tej samej czynności umysłu – tym bardziej, że dotyczy to dwóch krańcowo odmiennych stopni „przytomności” człowieka.

Znając jednak cechy fazy REM: żywy i reaktywny realizm marzeń sennych, pamięć treści snów po obudzeniu i dynamikę ruchów oczu, aż kusi, żeby P-REM przypisać we śnie rolę, jaką sakkady pełnią w stanie czuwania. Przy takim podejściu P-REM są sakkadami stanu REM. I tak są też klasyfikowane w neurookulistyce, jako sakkady spontaniczne (czyli skanujące otoczenie w spoczynku lub pojawiające się w fazie REM).

Być może biorą czynny udział w akcji marzenia sennego poprzez eksplorację przestrzeni, w której rozgrywa się treść snu (tzw. scanning hypothesis), częściowo kreując zdarzenia we śnie - oczywiście w obrębie dostępnego aktualnie śnionego „tematu przewodniego”? Jest to prawdopodobne, jeśli przyjrzeć się relacjom osób śniących świadomie, oraz analizując doświadczenia przeprowadzane z ich udziałem, lub analizując ruchy ciała i oczu osób z REM Sleep Behavior Disorder (RBD), którzy z uwagi na zniesienie atonii mięśniowej we śnie REM odgrywają śnione ruchy ciała. Również SREM wydają się odpowiadać za statyczne obrazy śnienia, jakie pamiętają niektórzy obudzeni w początkowym, wolnofalowym stadium snu. Charakterystyka ruchów SREM lub ich brak w NREM 1/2, przypomina bowiem ruchy wodzenia i fiksację.

Znając dynamikę ruchów ocznych w poszczególnych stadiach snu i rolę mięśniowych włókien fazowych i tonicznych, można by się pokusić o analizę treści snów przy uszkodzeniu konkretnych typów włókien lub ośrodków pniowych nimi zawiadujących. Nie dotarłem jednak do takich prac. A byłby to materiał nader interesujący i perspektywiczny, gdyż żadne dane nie wnoszą tyle do postępu, co lezje wybiórcze. Inną sprawą jest fakt, że jeśli nawet takie selektywne uszkodzenia się zdarzają, są zapewne wyjątkowo rzadkie i wykraczają poza zainteresowania neuronaukowego mainstreamu zajmującego się badaniem snu. Jeśli bowiem chodzi o układ przetwarzania wzrokowego (ze względu na różne aspekty tematyczne), znajduje się on w spektrum zainteresowania wielu dyscyplin nauk o człowieku: neurologów, psychiatrów, neuropsychologów, neurokognitywistów, neurookulistów, neurootologów, ortoptystów a nawet endokrynologów. Brak jest jednak dziedziny nauki, która zajmowałaby się nim w sposób kompleksowy od początku do końca. Należy też jednak szczerze powiedzieć, że nie wiadomo czy jest to w ogóle możliwe, ze względu na ogrom obszaru badawczego i materiału wiedzy do przyswojenia.


Ewa Oleszczyńska-Prost. Zez. Wrocław 2011.

Alon Y. Avidan, Phyllis C. Zee. Podręcznik medycyny snu. Red: Adam Wichniak, Warszawa 2007.

Jan Ober, Jacek Dylak, Wojciech Gryncewicz, Elżbieta Przedpełska-Ober. 2009. Sakkadometria – nowe możliwości oceny stanu czynnościowego ośrodkowego układu nerwowego. Nauka 4, 109-235.

Magdalena Wójcik. Zaburzenia gałkoruchowe w drżeniu samoistnym. Praca doktorska, Kraków 2011

Ilustracja: Double-M, CC-BY 2.0

wtorek, 23 sierpnia 2016

O nocnych szaleństwach czyli wspólnych cechach śnienia i schizofrenii


Rozważania nad istnieniem podobieństw pomiędzy snem i psychozą - stanem umysłu, w którym dochodzi do silnych zniekształceń w postrzeganiu otaczającej rzeczywistości, prowadzone są przez filozofów, psychiatrów i psychologów od ponad 200 lat. Już Immanuel Kant zauważył, że „szaleniec to śniący na jawie”, natomiast Artur Schopenhauer porównał sen do krótkiego szaleństwa, a szaleństwo do długiego snu. W 1907 roku Carl Gustav Jung, twórca psychologii głębi, napisał: „Gdybyśmy zobaczyli człowieka zachowującego się na jawie tak, jak zachowuje się on w swoim marzeniu sennym, otrzymalibyśmy kliniczny obraz dementia praecox” (schizofrenii). Eugen Bleuer, autor terminu „schizofrenia” (gr. „schizein“ – rozszczepić, gr. „phern” – umysł), zwrócił z kolei uwagę na to, że sposób myślenia osób chorujących na schizofrenię przypomina śnienie.

Podjęcie systematycznych badań naukowych, a nie tylko rozważań teoretycznych, nad wspólnymi cechami śnienia i schizofrenii umożliwiło jednak dopiero odkrycie w 1953 r. przez amerykańskich fizjologów – Eugena Aserinsky’ego i Nathaniela Kleitman’a fazy snu REM i jej związku z marzeniami sennymi. Podczas snu REM (ang. Rapid Eye Movement) występują szybkie ruchy gałek ocznych (stąd nazwa tej fazy snu), napięcie mięśniowe zanika i pojawiają się marzenia senne. To stadium charakteryzuje się, podobnie jak w stanach psychotycznych, występowaniem halucynacji zmysłowych, dziwacznych obrazów i metafor, a także urojeń. W tym stanie mamy także, między innymi, zmniejszoną zdolność do refleksji, niestabilną orientacją w czasie i przestrzeni, a nasze emocje są przeważnie negatywne.

Doznania wizualne w snach są jak halucynacje wzrokowe podczas intoksykacji narkotykowej. Nasze przeświadczenie o tym, że to, czego doświadczamy w trakcie snu jest rzeczywistością przypomina urojenia psychotyczne, a historie, jakie pojawiają się w snach, aby wytłumaczyć najdziwniejsze i najbardziej nieprawdopodobne zdarzenia są podobne do konfabulacji charakterystycznych dla delirium. Silny lęk odczuwany w przebiegu koszmarów sennych podobny jest do lęku odczuwanego przez osoby cierpiące na napady paniki. Z kolei zaburzenia pamięci krótkotrwałej w czasie snu i problemy z zapamiętaniem treści marzeń sennych po przebudzeniu przypominają zaniki pamięci u osób cierpiących na różne formy demencji, np. chorobę Alzheimera.

Podstawową cechą wspólną dla śnienia i schizofrenii jest autyzm rozumiany jako zaabsorbowanie zarówno osoby śniącej, jak i chorującej na schizofrenię nie przez świat zewnętrzny, ale świat wewnętrzny. Przy wykluczeniu świadomego śnienia, kiedy śniący zdaje sobie sprawę, że śni i może mieć wpływ na to, co dzieje się w jego śnie, w obydwu omawianych stanach występuje nie tylko brak wglądu, ale także utrata autonomii w stosunku do zawartości myśli. Brak świadomości przeżywania wyimaginowanych wydarzeń podczas śnienia należy do jednej z kluczowych cech tego stanu, natomiast brak poczucia choroby jest typowy dla niemal wszystkich osób cierpiących na schizofrenię w czasie pierwszego epizodu oraz około 30% pacjentów przewlekle chorych. Co więcej, osoba cierpiąca na schizofrenię może mieć poczucie, że to co się z nią dzieje jest od niej niezależne, podobnie jak to się dzieje ze śniącym, którego świat marzeń sennych znajduje się poza jego kontrolą.

Zarówno podczas śnienia jak i w schizofrenii bodźce pochodzenia wewnętrznego są traktowane tak, jakby posiadały zewnętrzną przyczynę. Wydaje się więc, że zarówno osoby śniące, jak i chore nieprawidłowo odczytują źródło dochodzących do nich bodźców. Objawy pozytywne związane z zaburzeniami myślenia, takie jak urojenia ksobne (przekonanie osoby, że wszystkie, nawet niewinne uwagi i zachowania innych odnoszą się do niej), czy te związane z błędnym utożsamianiem innych osób i siebie, wykazują więc duże podobieństwo do fenomenologicznego przeżycia marzenia sennego. Błędy w rozpoznawaniu tożsamości, polegające na przekonaniu, że osoba znana została zastąpiona przez sobowtóra (zespół Capgrasa) lub tym, że znajoma osoba zmienia swój wygląd fizyczny (urojenie Frėgoli) występują u 15% osób chorujących na schizofrenię oraz pojawiają się w około 1% marzeń sennych osób zdrowych. Tematy związane z prześladowaniem oraz byciem ściganym należą z kolei do jednych z najczęściej pojawiających się typowych treści marzeń sennych. W schizofrenicznych zespołach paranoidalnych urojenia prześladowcze dotyczące głównie bycia prześladowanym, niepokojonym lub atakowanym i występują u około 58,3% chorych. Urojenia mogące pojawić się w schizofrenii są więc podobne do snów pod względem doświadczeniowym.

Umiejętność wczuwania się w stany psychiczne innych osób, rozumienie ich życzeń i przekonań oraz zdolność do myślenia o myśleniu (tego dotyczy tzw. teoria umysłu), abstrahowanie oraz refleksyjność są z reguły nieobecne podczas śnienia. Podobnie, osoby chorujące na schizofrenię przejawiają deficyty w zakresie teorii umysłu, co być może wiąże się u nich także z innymi aspektami zaburzeń poznawczych, między innymi pamięci, czy uwagi. Co więcej, osoby śniące posiadają zazwyczaj mało empatii w stosunku do innych postaci obecnych w ich marzeniu sennym, natomiast osoby chore na schizofrenię charakteryzują się deficytami w zakresie poznawczego (rozpoznawanie emocji) i afektywnego (emocjonalna reakcja na stan emocjonalny drugiej osoby) aspektu empatii.

Opisywane analizy i badania sugerują, że dzięki podobieństwu stanu śnienia i schizofrenii, śniący umysł może stanowić użyteczny model ilustrujący tę chorobę. Mając nieprzyjemny, dziwaczny sen, w którym śniący czuje się zagrożony, osobom zdrowym po przebudzeniu łatwiej wyobrazić sobie co odczuwać mogą osoby cierpiące na schizofrenię. Chociaż uderzające podobieństwo pomiędzy powyższymi aspektami śnienia i psychozy zostało zauważone także przez pionierów nowoczesnego podejścia do psychopatologii, to jednak najnowsze osiągnięcia neurobiologii dostarczające danych elektrofizjologicznych, neurochemicznych i wiedzy pochodzącej z badań funkcjonalnych mózgu doprowadziły kilku współczesnych badaczy do połączenia tych złożonych zjawisk, wskazując na wspólne wzorce w doświadczeniach związanych zarówno ze śnieniem jak i psychozą. Te doświadczenia nie są oczywiście tożsame, jednak ich podobieństwo, także na poziomie neurobiologicznym, pozwala na tworzenie modeli tej choroby w odniesieniu do śnienia.

O ile osoba cierpiąca na schizofrenię i zdrowa osoba śniąca mogą doświadczać podobnych przeżyć, ich mózgi również zdają się funkcjonować w tych dwóch stanach w zbliżony sposób. W badaniach nad procesami zachodzącymi w mózgu porównuje się zazwyczaj aktywność kory mózgowej, przepływ krwi wewnątrzczaszkowej oraz wydzielanie neuroprzekaźników w stadium snu REM u osób zdrowych oraz w stanie czuwania u osób chorujących na schizofrenię. Dotyczy to schizofrenii, w której dominują objawy wytwórcze (urojenia, omamy), przy możliwej obecności mniej intensywnych objawów takich jak m.in. spłycenie lub niedostosowanie emocjonalne lub rozkojarzenie wypowiedzi.

Chociaż bezpośrednie korelaty pomiędzy procesami śnienia a leżącymi u ich podłoża zmianami neurofunkcjonalnymi nie są do końca poznane, niektóre badania są zgodne co do tego, że sen REM i związane z nim marzenia senne wiążą się ze względną nadaktywnością (wzrostem metabolizmu) regionów okołolimbicznych mózgu odpowiedzialnych za reakcje emocjonalne i afektywne (np. ciało migdałowate i przednia kora obręczy) oraz z obniżonym poziomem aktywności (spadkiem metabolizmu) w rejonie kory czołowej. W utrzymaniu tego funkcjonalnego stanu pośredniczą złożone i współoddziałujące szlaki neurochemiczne – podczas snu REM obserwuje się silny wzrost aktywności cholinergicznej połączony ze spadkiem wyładowań neuronów serotoninergicznych i noradrenergicznych.

Najważniejsze rezultaty badań elektrofizjologicznych nad związkami śnienia i schizofrenii wskazują na obecność zaburzeń w filtrowaniu sensorycznym w schizofrenii oraz stadium snu REM. Hamowanie ośrodkowe, proces polegający na atenuacji nadmiernej pobudliwości jednych neuronów przez inne - hamujące - których działanie jest niezbędne do prawidłowego funkcjonowania w stanie czuwania, nie jest obserwowane u osób zdrowych podczas śnienia. U osób chorujących na schizofrenię, nie występuje ono ani w stadium snu REM ani w stanie czuwania. Podobne psychotycznemu myślenie, występowanie halucynacji i deficyty w logicznym myśleniu obecne w fazie snu REM mogą być zatem wynikiem zmian w funkcjonowaniu korowym o podobnym podłożu. Wyniki badań EEG (elektroencefalograficznych) pokazują, że rytm gamma jest zsynchronizowany w obszarach korowych w stanie czuwania, natomiast ulega stłumieniu pomiędzy obszarami wzrokowymi a korą czołową i przedczołową oraz pomiędzy hipokampem a korą mózgową w fazie snu REM. To zahamowanie wewnętrznej spójności rytmu gamma w stadium snu paradoksalnego u osób zdrowych odpowiada typowemu dla schizofrenii deficytowi połączeń między centralnymi strukturami mózgu.

Dane pochodzące z badania przepływu krwi wewnątrzczaszkowej wykazują, że grzbietowo-boczna kora przedczołowa nie jest w pełni aktywna podczas fazy snu REM. Częściowa dezaktywacja tego obszaru może wyjaśniać zakłócenia w procesie mentalizacji, zwłaszcza obniżenie kontroli powiązanej z samoświadomością. Spadek metabolizmu w rejonie kory przedczołowej połączony ze zwiększoną aktywnością okolic układu limbicznego był wykazywany również w przypadku osób chorych na schizofrenię (w stanie czuwania) jak i u osób z zaburzeniem afektywnym dwubiegunowym (ang. bipolar disorder) w stanie manii. Na poziomie neurochemicznym, pozytywne symptomy (czyli omamy i urojenia) wynikają, jak się przypuszcza, z zaburzenia procesów plastyczności synaptycznej regulowanych przez takie neuroprzekaźniki jak dopamina, acetylocholina i serotonina.

Wyniki badań przeprowadzonych przy użyciu tomografii komputerowej pozwoliły natomiast na sformułowanie jednej z hipotez dotyczących powstawania halucynacji w schizofrenii. Zakłada ona ograniczenie udziału percepcji bodźców zewnętrznych, co wiąże się ze zmniejszonym wpływem informacji zmysłowych na aktywację obwodu wzgórzowo-korowego oraz z desynchronizacją rytmu gamma w obszarze wzgórza. Podczas stadium snu REM również następuje odcięcie od informacji zmysłowej, dlatego wydaje się, że przedstawiony w kontekście schizofrenii mechanizm powstawania halucynacji może, przynajmniej częściowo, wyjaśnić ich obecność w czasie snu REM.

W oparciu o powyższe rozważania nasuwa się stwierdzenie, że sny są niemal idealną symulacją psychozy o podłożu organicznym, albo nawet – jak to określił Allan Hobson – śnienie samo w sobie jest psychozą, lecz „zdrową psychozą”.

Pojawia się pytanie, czy fakt ten można jakoś wykorzystać. Hobson zauważa, że skoro śnienie jest rodzajem psychozy, to osoba chora, podobnie jak osoba śniąca, doświadcza czasami okresów „normalności” umożliwiających wgląd we własny stan i zdanie sobie sprawy z własnej choroby, lub z faktu, że śni. Poprzez tę analogię, świadome śnienie może stanowić klucz do pierwszego etapu walki z psychozą, w której chociaż osoba chora, zdając sobie sprawę ze swojego stanu nie stanie się nagle „zdrowa”, to może poczynić pierwszy krok w przejęciu kontroli nad swoja chorobą (warto jednak zapoznać się z niedawno opublikowanym badaniem nad świadomym śnieniem u osób z objawami psychotycznymi, które sugeruje coś odwrotnego). Wydaje się więc, że swoją uwagę naukowcy powinni zwrócić raczej w kierunku stanów umysłu, w których mamy do czynienia nie z jednym, a z dwoma stanami świadomości na raz, a przynajmniej z pewnymi ich cechami występującymi jednocześnie. Stanu takiego możemy doświadczyć na przykład po okresie przedłużonego braku snu REM - wtedy podczas czuwania organizm próbuje nadrobić brakujący sen REM i możliwe jest doświadczanie sennych halucynacji pomimo, że nie śpimy. Podobne zjawisko jednoczesnego występowania cech obu tych stanów świadomości występuje także podczas śnienia na jawie czy właśnie świadomego snu, który uważany jest za stan hybrydowy pomiędzy śnieniem a jawą. Chociaż nie wiadomo, jak wygląda świadome śnienie od strony neurochemicznej, badania nad neuronalnymi korelatami świadomego śnienia pokazują, że obszary mózgu, które podczas zwykłego snu REM są w małym stopniu aktywne, „zapalają” się w momencie przejścia w świadomy sen. Zmiany te obejmują charakterystyczny dla stanu czuwania wzrost aktywności fal gamma w okolicach grzbietowo-bocznej kory przedczołowej, a także wzrost aktywności innych obszarów mózgu odpowiedzialnych za wyższe zdolności poznawcze, chociaż osoba wciąż pozostaje w stanie snu REM (stąd pojęcie stanu hybrydowego).

Innego zdania jest Sue Llewellyn z Uniwersytetu w Manchesterze, według której zjawiska takie jak świadome śnienie czy śnienie na jawie nie wyczerpują możliwości, jakie mogą wynikać z nakładania się na siebie cech charakteryzujących sen REM i stan czuwania. Stawia ona hipotezę, zgodnie z którą schizofrenia jest stanem zawieszenia pomiędzy snem a jawą wynikającym z genetycznych uwarunkowań wyrażających się poprzez niedobór kwasów tłuszczowych, prowadzących do zaburzeń w funkcjonowaniu błon komórkowych. Nie pozostaje to bez wpływu na procesy uwalniania i unieczynniania oraz wychwytu zwrotnego neuroprzekaźników. W schizofrenii, podobnie jak podczas snu REM, aktywność układu dopaminergicznego wydaje się być obniżona przy jednoczesnej nadaktywności układu cholinergicznego, jednak sposobów interakcji pomiędzy układami neuroprzekaźnikowymi może być wiele, co odzwierciedla się również w silnym zróżnicowaniu przebiegu schizofrenii obserwowanego wśród pacjentów. Llewellyn zauważa, że śnienie może być modelem przede wszystkim dla tzw. pozytywnych objawów schizofrenii, takich jak halucynacje słuchowe i wzrokowe, przypisywanie nietypowych znaczeń dla normalnych wydarzeń czy urojenia.

Chociaż charakterystyczne cechy śnienia, które - w pewnym zakresie - wynikają z procesów neurobiologicznych zachodzących w mózgu, przypominają objawy schizofrenii, to pomimo znaczących podobieństw, nie udało się jednak dotychczas znaleźć przekonującego wyjaśnienia, dlaczego w snach pojawiają się przede wszystkim obrazy, podczas gdy w schizofrenii dominują halucynacje słuchowe. Autorka tłumaczy jednak, że ponieważ zmysł słuchu jest ostatnim, który „wyłącza się” przy zasypianiu, i pierwszym, który odzyskuje pełną sprawność po przebudzeniu, to halucynacje związane właśnie z tym zmysłem dominowałyby w sytuacji gdyby czyjś umysł był uwięziony pomiędzy snem i jawą. Jeżeli pewne cechy charakteryzujące śnienie i stan czuwania mogą ze sobą współistnieć to być może stan taki prowadzi do zaburzenia pierwotnych funkcji snu i w konsekwencji może stanowić przyczynę zaburzeń psychicznych na jawie? Chociaż temat znaczenia funkcjonalnego snu i śnienia w procesach konsolidacji pamięci wciąż pozostaje otwarty, coraz więcej dowodów wskazuje na to, że podczas snu zasoby pamięci ulegają procesom reorganizacji a świeżo nabyte ślady pamięciowe zostają przeniesione do magazynów pamięci długotrwałej. Zmiany zachodzące w śladach pamięciowych mogą polegać na tworzeniu nowych połączeń pomiędzy istniejącymi już w pamięci długotrwałej wspomnieniami a nowo nabytymi śladami pamięciowymi. Procesy te prawdopodobnie znajdują odzwierciedlenie w treści marzeń sennych, które czerpią „materiał” z urywków starych i nowych śladów pamięciowych, do których dorabiane jest znaczenie i kontekst. Fikcyjna rzeczywistość snu uzbrojona jest jednak w mechanizm ochronny, który powoduje, że zazwyczaj po przebudzeniu zapominamy znaczną część snów, a to, co pozostaje w naszej głowie też z czasem popada w niepamięć.

Peter Kelly z Instytutu Badań Biomedycznych Novartis zaproponował hipotezę, zakładającą że przynajmniej za częścią urojeń osób cierpiących na schizofrenię może stać nieprawidłowe funkcjonowanie wewnętrznego mechanizmu hamującego tworzenie wspomnień z nierzeczywistych wydarzeń mających miejsce w marzeniach sennych. Zgodnie z tą hipotezą, u osób chorych treść marzeń sennych jest włączana do pamięci długotrwałej i traktowana jako zwykłe doświadczenie, które uznawane jest za wydarzenie, jakie miało miejsce w realnym świecie. ”Mieszanie się” treści marzeń sennych i wspomnień realnych wydarzeń (ang. dream-reality confusion, DRC) polega właśnie na trudności lub niemożliwości określenia, czy dane wydarzenie/doświadczenie miało miejsce w stanie czuwania czy było ono treścią marzenia sennego. Jego podłoże nie jest jednak poznane.

Według Allana Hobsona za zapominanie snów odpowiedzialne są niskie poziomy serotoniny i noradrenaliny podczas snu, które uniemożliwiają wykształcenie trwałych wspomnień dotyczących wydarzeń ze snów. Prawdopodobnie, gdyby te dwa systemy aminergiczne były wyłączone podczas snu całkowicie, nie pamiętalibyśmy swoich snów w ogóle. Jednak ich szczątkowa aktywacja umożliwia zapamiętanie ostatnich sennych chwil, a ponieważ tuż po przebudzeniu poziomy serotoniny i noradrenaliny wracają szybko do wysokich poziomów, charakterystycznych dla stanu czuwania, wspomnienia te mogą przekształcić się w pewną słabą formę pamięci, nie wpływającą na postrzeganie ich przez nas jako rzeczywiste. Według Kelly’ego jednak to nie aminy biogenne lecz inny związek - wazotocyna, peptyd podobny do oksytocyny - jest odpowiedzialny za hamowanie formowania wspomnień ze snów, gdyż spełnia równocześnie trzy warunki: jest wydzielana (przez przysadkę mózgową) podczas snu REM, w którym występowały sny, uczestniczy w procesach związanych z powstawaniem pamięci, a mechanizm jej działania jest upośledzony u osób cierpiących na schizofrenię.

Warto wspomnieć, że podobne zjawisko mieszania wspomnień marzeń sennych z rzeczywistością zachodzi u osób cierpiących na narkolepsję. Zdaniem Erina Wamsleya i Roberta Stickgolda za zjawisko wplątywania wspomnień z marzeń sennych do codziennego życia przez osoby z diagnozą narkolepsji odpowiada błędne kodowanie wspomnień marzeń sennych w pamięci długotrwałej, poprzez przypisywanie im atrybutów wspomnienia ze stanu czuwania.

Czy zatem urojenia pojawiające się w schizofrenii mogą być wynikiem pomieszania wspomnień ze świata snów z rzeczywistością? Wiadomo, że DRC często towarzyszy różnym zaburzeniom, między innymi zaburzeniu osobowości z pogranicza, borderline (BPD). Model teoretyczny opisujący relacje między zaburzeniem osobowości typu bordeline a DRC zakłada, że osoby posiadające diagnozę BPD przejawiają większą skłonność do doświadczania DRC właśnie ze względu na występowanie cech wspólnych dla tych dwóch warunków, takich jak zaburzenia snu, objawy dysocjacyjne, wydarzenia życiowe, zaburzenia poznawcze oraz cienkie granice (ang. boundaries – koncepcja granic została opracowana przez Ernesta Hartmanna). Wciąż brakuje jednak badań doświadczalnych mogących wykazać możliwe kierunki zależności pomiędzy BPD a DRC.

Nie można zatem wykluczyć hipotezy mówiącej, że uszkodzenie neurochemicznych mechanizmów odpowiadających podczas snów za reorganizację i tworzenie prawidłowych śladów pamięciowych może odpowiadać za występowanie DRC w różnych zaburzeniach psychotycznych i w efekcie prowadzić np. do urojeń w przebiegu schizofrenii. Schizofrenia oraz śnienie występujące w stadium snu REM charakteryzują się podobnymi cechami fenomenologicznymi oraz posiadają częściowo wspólne podłoże neurobiologiczne. O ile śnienie może okazać się użytecznym modelem w celu lepszego poznania schizofrenii, należy pamiętać, że nie są to stany identyczne. Śnienie jest stanem samoorganizującym się, podczas kiedy schizofrenia – nieuporządkowanym. Podczas śnienia przeważają halucynacje wzrokowe, w schizofrenii – słuchowe. Badania nad śnieniem oraz patologicznymi stanami występującymi w stanie czuwania stanowią jednak bardzo obiecujący kierunek dalszych rozważań, pozwalają na lepsze zrozumienie nie tylko chorób psychicznych, ale również procesu powstawania marzeń sennych.

D’Agostino A, Limosani I, Scarone S (2012) The dreaming brain/mind: a role in understanding complex mental disorders? Frontiers in Psychology 3, 3. doi: 10.3389/fpsyt.2012.00003.

Dresler M, Wehrle R, Spoormaker VI, Steiger A, Holsboer F, Czisch M, Hobson JA (2015) Neural correlates of insight in dreaming and psychosis. Sleep Medical Reviev 20, 92-9.

Gottesmann C (2006) The dreaming sleep stage: a new neurobiological model of schizophrenia? Neuroscience, 140, 1105–1115.

Kelly PH (1998) Defective inhibition of dream event memory formation: A hypothesized mechanism in the onset and progression of symptoms of schizophrenia. Brain Research Bulletin 46 (3), 189-197.

Limosani I, et al. (2011) The dreaming brain/mind, consciousness and psychosis. Consciousness and Cognition, doi:10.1016/j.concog.2010.11.014.

Llewellyn S (2011) If waking and dreaming consciousness became de-differentiated, would schizophrenia result?. Consciousness and Cognition, doi:10.1016/j.concog.2011.03.022.

Scarone SI, Manzone ML, Gambini O, Kantzas I, Limosani I, D'Agostino A, Hobson JA (2008) The dream as a model for psychosis: an experimental approach using bizarreness as a cognitive marker. Schizophrenia Bulletin, 34 (3), 515-22

Skrzypińska D, Szmigielska B (2013) What links schizophrenia and dreaming? Common phenomenological and neurobiological features of schizophrenia and REM sleep. Archives of Psychiatry and Psychotherapy, 2, 29-35.

Ilustracja: new 1lluminati - light bearer, CC-BY 2.0

czwartek, 7 lipca 2016

Czy w zaburzeniu osobowości typu borderline występuje większa podatność na „mieszanie się” marzeń sennych i wspomnień realnych wydarzeń?


„Mieszanie się” treści marzeń sennych i wspomnień realnych wydarzeń (ang. dream-reality confusion, DRC) jest zagadnieniem, które by móc zostać lepiej poznanym, wymaga jeszcze przeprowadzenia wielu badań. DRC polega na trudności lub niemożliwości określenia, czy dane wydarzenie/doświadczenie miało miejsce w stanie czuwania, czy było ono treścią marzenia sennego. W tym przypadku można zadać pytanie o to, w jakim stopniu osoby posiadające określone cechy psychiczne są w stanie odróżnić śnienie od rzeczywistości? Dotychczas przeprowadzono nieliczne badania dotyczące DRC w populacji nieklinicznej. Z bardziej specyficznych grup, badano występowanie DRC w narkolepsji, wykazując powszechność trudności w określeniu, czy coś wydarzyło się naprawdę, czy było jedynie częścią marzenia sennego w tym zaburzeniu snu. Dostępne są także doniesienia dotyczące związków DRC z objawami psychotycznymi.

Podobnie, niewiele wiadomo na temat śnienia w zaburzeniu osobowości typu borderline (ang. borderline personality disorder, BPD). Termin ten (oznaczający zaburzenie „z pogranicza” lub „pograniczne”) został po raz pierwszy wprowadzony do psychiatrii w latach trzydziestych XX wieku dla nazwania stanu, w którym z jednej strony występowały objawy zaburzeń psychotycznych, a z drugiej – nerwicowych. BPD po raz pierwszy pojawiło się w systemach klasyfikacyjnych w 1980 roku w DSM-III. Zaburzenie to ujmowane jest w kolejnych edycjach tego podręcznika diagnostycznego. W najnowszym DSM-V, znajduje się w dziale poświęconym zaburzeniom osobowości.

Osoby z diagnozą BPD przejawiają wzorzec niestabilnych, lecz intensywnych relacji interpersonalnych oscylujących pomiędzy uwielbieniem a nienawiścią, znaczną zmienność nastroju oraz skłonność do myślenia czarno-białego i odczuwania złości. Ponadto często zmienia się ich wewnętrzny obraz „ja”, jak również mają tendencję do odczuwania pustki. Nie bez znaczenia jest ich skłonność do zachowań impulsywnych, jak np. objadanie się lub zbyt szybka jazda samochodem. Powszechnie występują u nich także zachowania (para)samobójcze i samookaleczenia. Osoby z BPD podejmują wszelkie starania, aby uniknąć wyimaginowanego lub rzeczywistego opuszczenia. Miewają również tendencję do doświadczania objawów dysocjacyjnych w reakcji na stres. Według Amerykańskiego Towarzystwa Psychiatrycznego, na zaburzenie osobowości borderline cierpi około 2% populacji. Aby móc lepiej wyobrazić sobie, jak funkcjonują osoby z BPD, można sięgnąć po film „Fatalne zauroczenie”, w którym Glen Close w roli Alex Forrest pokazała jedną z najlepszych interpretacji tego zaburzenia.

Opracowana hipoteza obejmująca grupy wzajemnie powiązanych czynników występujących w obu warunkach (BPD i DRC) zakłada, że u osób z zaburzeniem borderline istnieje zwiększona podatność na mieszanie się wspomnień ze snu i stanu czuwania. Na najbardziej ogólnym poziomie można wyróżnić 5 kategorii tych czynników, umownie zakwalifikowanych jako: zaburzenia snu, objawy dysocjacyjne, wydarzenia życiowe, zaburzenia poznawcze oraz granice.

Osoby posiadające diagnozę BPD często doświadczają zaburzeń snu. Badania wskazują na występowanie problemów ze snem u 15 - 95,5% populacji osób z tą diagnozą. Zmienne cykle snu i czuwania występują zarówno w przebiegu BPD, jak i łączą się z DRC. Zmienność cykli snu-czuwania prowadzi do intruzji doświadczeń ze snu do świadomości w stanie czuwania, co skutkuje poczuciem depersonalizacji (objaw dysocjacyjny) oraz mają szkodliwy wpływ na pamięć, sprzyjając powstawaniu fałszywych wspomnień. Osoby zgłaszające zaburzenia snu/problemy ze snem, wypadają wysoko w skalach dysocjacji, skłonności do fantazjowania oraz podatności do powstawania fałszywych wspomnień.

Jak wspomniano powyżej, zaburzenia snu powiązane są z objawami dysocjacyjnymi. Osoby cierpiące na BPD przejawiają skłonność do dysocjacji. Stanów dysocjacyjnych doświadcza ok. 2/3 osób z BPD. Co więcej, objawy dysocjacyjne i skłonność do fantazjowania są pozytywnie skorelowane. Obie te cechy związane są także z DRC. W badaniach wykazano także pozytywną korelację pomiędzy objawami dysocjacyjnymi, a impulsywnością, która jest jedną z cech diagnostycznych BPD.

Osoby cierpiące na BPD doświadczają również więcej negatywnych wydarzeń życiowych niż osoby z innymi zaburzeniami osobowości oraz bez nich. Zgodnie z klasyczną hipotezą ciągłości (ang. continuity hypothesis), na treść marzeń sennych wpływają wydarzenia z życia śniącego, dlatego też treść marzeń sennych osób z BPD powinna być bardziej negatywna. W rzeczywistości, osoby z BPD doświadczają koszmarów sennych częściej niż osoby z populacji nieklinicznej. Marzenia senne częściej mylone z rzeczywistymi wydarzeniami są realistyczne, nieprzyjemne oraz prowadzą do podejmowania związanych z nimi zachowań w stanie czuwania. Wydaje się więc, że nieprzyjemna treść marzeń sennych w BPD może być czynnikiem zwiększającym prawdopodobieństwo większej podatności na DRC, zwłaszcza jeśli uwzględni się także liczne zaburzenia poznawcze występujące w tej populacji.

Deficyty poznawcze u osób z BDP można ogólnie przypisać do grup takich jak: przemijające wyobrażenia quasi-psychotyczne, skłonność do objawów dysocjacyjnych, zniekształcenia poznawcze z zakresu funkcjonowania społecznego oraz zaburzenia neuropoznawcze. Co więcej, mogą one przejawiać problemy z monitorowaniem rzeczywistości. Jest to zdolność do odróżnienia wspomnień realnych wydarzeń od treści snów, wyobrażeń lub urojeń. Obejmuje ona dwa procesy decyzyjne: 1) ocenę, czy właściwości śladu pamięciowego są bardziej typowe dla wspomnień wydarzeń zewnętrznych czy wspomnień generowanych wewnętrznie, 2) ocenę opartą na towarzyszących wspomnieniach/wiedzy (jest to bardziej złożony proces, zajmujący więcej czasu). Marzenia senne uznawane są za wewnętrznie generowane wydarzenia, które trudno odróżnić od podobnych, zewnętrznych wydarzeń, ponieważ w ich powstawanie nie są włączone świadome operacje poznawcze. Brak pewności co do istotnych wskazówek dotyczących pochodzenia źródła wspomnienia wynikający z trudności w monitorowaniu rzeczywistości prowadzić może do wystąpienia DRC, wskazując na związek pomiędzy zaburzonymi procesami monitorowania rzeczywistości a myleniem snów z rzeczywistością.

Koncepcja granic (ang. boundaries) opracowana została przez Ernesta Hartmanna. Ujmuje ona kontinuum pomiędzy cienkimi a grubymi granicami, definiowanymi jako właściwość danej osoby pozwalająca jej na określenie zależności pomiędzy m.in. stanem śnienia a stanem czuwania, pomiędzy świadomością a nieświadomością, czy między myślami a emocjami. Osoby z BPD przeważnie charakteryzują się cienkimi granicami, co oznacza, że częściej odpamiętują marzenia senne niż osoby o grubych granicach oraz częściej doświadczają nakładania się przeżyć ze stanu czuwania oraz marzenia sennego.

Analiza teoretyczna uwzględniająca przedstawione powyżej zmienne wskazuje na to, że osoby z BPD mogą być bardziej podatne na „mieszanie się” treści marzeń sennych ze wspomnieniami realnych wydarzeń. Kolejnym krokiem w pracach nad opisanym powyżej modelem jest jego empiryczna weryfikacja. Planowane jest przeprowadzenie kilkuetapowych badań nad związkami nakładania się wspomnień ze stanu snu i czuwania oraz BPD, obejmujących m.in. wykorzystanie miar subiektywnych, badania laboratoryjne przy użyciu polisomnografu oraz badania w warunkach pozalaboratoryjnych polegające na zbieraniu zarówno narracji marzeń sennych, jak i opisów doświadczeń z dnia. Otrzymane wyniki stanowić będą próbę odpowiedzi na wiele pytań dotyczących funkcjonowania osób z diagnozą BPD oraz z rysem tego zaburzenia osobowości w porównaniu do osób zdrowych.

Skrzypińska D, Szmigielska B (2015). Dream-reality confusion in borderline personality disorder: a theoretical analysis. Frontiers in Psychology, 6, doi: 10.3389/fpsyg.2015.01393.

Foto: Vlad Gilcescu, CC BY-NC 2.0

środa, 27 kwietnia 2016

Kolory w snach



Jak często zwracasz uwagę na to czy śnisz w kolorze? Większość osób powiedziałaby, że ich marzenia senne są pełne kolorów, a tylko czasami pamiętają swoje sny w odcieniach szarości. Temu zagadnieniu przyglądano się już we wczesnych latach zeszłego wieku. Co ciekawe, pierwsze badania w tym kierunku wskazywały na czarno-biały charakter snów, a kolorowe sny uznawano wtedy za przejawy różnych zaburzeń psychicznych. Przełom nastąpił z czasem, kiedy w latach 60-tych dwudziestego wieku zaobserwowano nagły wzrost kolorowych snów wśród badanych, a w roku 1968 amerykańscy naukowcy z Narodowego Instytutu Zdrowia Psychcznego (NIMH) orzekli, że niemal wszystkie sny zawierają kolory. Ciekawostką jest, że okres ten zbiega się w czasie z upowszechnieniem się... kolorowej telewizji w Stanach Zjednoczonych.

Kolorowe media w życiu ludzi wydawały się być ważnym czynnikiem wpływającym na obecność kolorów w snach, co potwierdzono w poźniejszych badaniach nad snami osób starszych i z terenów wiejskich. Jak się można domyślić, badania te pokazały, że odcienie szarości występowały znacznie częściej w snach tych osób, oraz w ogóle tych, które dłużej miały dostęp do czarno-białej telewizji, niż w przypadku współczesnych studentów oraz mieszkańców miast z szerszym dostępem do telewizji kolorowej.

W sprzeczności z powyższymi danymi stoją jednak wyniki badań, obejmujących analizę ponad 25 tysięcy snów z bazy danych, w której najstarsze zapisane sny sięgają roku 1912. W tym wypadku okazało się, że kolor w snach sprzed 1950 roku występował równie często, co w snach z lat bardziej współczesnych. Przypuszcza się zatem, że przewaga czarno-białych snów w pierwszej połowie XX wieku, a więc nie tylko przed wynalezieniem kolorowej telewizji ale również przed odkryciem fazy REM i zmiany podejścia do badań nad snem i marzeniami sennymi, jest wynikiem stosowania nieco odmiennej metodologii badawczej w drugiej połowie XX wieku.

Okazuje się również, że jeżeli wydaje nam się, że śnimy na czarno-biało to być może mamy problemy z pamięcią. Wykazano bowiem, że udział snów czarno-białych jest negatywnie skorelowany z pamięcią kolorów i zdolnością do pamiętania snów. Jeżeli o kolory pytano badanych od razu po przebudzeniu, udział czarno-białych snów spadł prawie do zera. Podobne przypuszczenia, że problemy z przywoływaniem treści marzeń sennych mogą odpowiadać za brak kolorów w snach poajwiły się już wcześniej, kiedy zaobserwowano, że jedynie od 25% do 29% osób pytanych w ciągu dnia o to co im się śniło przypominało sobie kolory. Kiedy z kolei budzono osoby w fazie snu REM, kiedy, jak wiadomo, śnimy najaktywniej, kolory pojawiały się w 70% - 83% przypadków.

Zdolność do przywoływania kolorów w snach po przebudzeniu może też wiązać się z charakterem naszej świadomości we śnie. Przykładowo, w snach świadomych, w których mamy wysoki poziom wglądu, niemal pełny dostęp do zasobów pamięciowych i potrafimy krytycznie spojrzeć na otaczającą nas rzeczywistość, wyraźne kolory pamiętane są znacznie częściej niż w snach zwykłych. A może po prostu treść, łącznie z takimi szczegółami jak kolory, lepiej pamiętamy z tego typu snów? Możliwe, że tak właśnie jest i ma to związek z emocjami. Wydaje się, że ludzie wykazują tendencję do lepszego zapamiętywania tych fragmentów snów, które silnie stymulują emocje, a epizody swiadomości podczas snu należą do takich fragmentów w szczególności.

Co więcej, kolory w snach mogą odzwierciedlać naszą osobowość, na co wskazują badania z wykorzystaniem testu kolorów Lüschera zaadoptowanego do marzeń sennych. Test Lüshera pozwala na podstawie preferencji kolorów określić osobowość osoby badanej. Kiedy zasady tego testu zastosowano do kolorów występujących w marzeniach sennych badanych osób, okazało się, że określona na ich podstawie osobowość w dużej mierze odpowiada wynikowi testu przeprowadzonego w normalnych warunkach. Warto jednak mieć na uwadze, że test kolorów Lüschera jest jednym z tych narzędzi psychologii, którego skuteczność została poddana w wątpliwość, w skutek czego prawie w ogóle się z niego obecnie nie korzysta (a przynajmniej nie jest to zalecane).

A co jeśli sny nie są ani czarno-białe, ani kolorowe? Ciekawe zdanie w tej kwestii ma profesor filozofii z University of California w Riverside, Eric Schwitzgebel. Czy osoby, które uważają, że śnią w kolorze, naprawdę śnią w kolorze, czy może kolory większości obiektów w świecie snu są niesprecyzowane – podobnie jak w powieści, gdzie nie jest podany każdy szczegół, w tym kolor, opisywanych obiektów, co nie przeszkadza nam sobie tego wyobrażać w odpowiedni dla nas sposób?

Codzienne życie widzimy przecież w różnych barwach, zatem nieracjonalne wydaje się aby film czy telewizja determinowała to, w jakim kolorze śnimy. Bardziej prawdopodobne jest, że z czasem zmienił się sposób opisywania snów, niż same sny. Podejrzane jest,  że era snów czarno-białych zaczęła się i skończyła wraz z nastaniem i upadkiem czarno-białej telewizji. Czemu za czasów Arystotelesa, Descartesa czy nawet Freuda nikt nie zauważył, że sny są czarno białe? Może dlatego, że nie było wtedy czarno-białej telewizji? Według Schwitzgebela, marzenia senne mogą nie mieć sprecyzowanych kolorów, natomiast to jak je opisujemy może zależeć po prostu od czynników kulturowych, na które jesteśmy narażeni.

Murzyn, E. (2008). Do we only dream in color? A comparison of reported dream color in younger and older adults with different experiences of black and white media. Consciousness and cognition, 17(4), 1228-37.

Schredl, M., Fuchedzhieva, A., Hämig, H., & Schindele, V. (2008). Do we think dreams are in black and white due to memory problems? Dreaming, 18(3), 175-180.
Hoss, RJ (2010). Color reported in dreams in the first and second half of the 20th century: a content analysis. http://dreamscience.org (30.03.2016)

Hoss RJ. Working with colors in dreams. http://www.dreamgate.com/dream/hoss/ (30.03.2016)

Schwitzgebel E. (2002). Why did we think we dreamed in black and white? Stud. Hist. Phoil. Sci. 22, 649-660.

Zdjęcie: Jan Brzostowski

poniedziałek, 14 marca 2016

RE(M)asumując ruchowe funkcje oczu


W latach 30. ubiegłego stulecia, niejaki Edmund Jacobson prosił badane przez siebie osoby, aby przypominały w swojej pamięci znane sobie obiekty. Niezmiennie przy takich wyobrażeniach występował u nich ruch oczu, jakby omiatali wzrokiem rzeczywisty obiekt. Najbardziej spektakularny ruch gałek ocznych (w pionie) występował przy wyobrażeniu sobie wieży Eiffla.

W dobie eyetrackingu, liczba podobnych obserwacji nie tylko zwiększyła się, ale też stały się one dokładniejsze (mierzalne). W 1998r. Ann M. Demarais i Barry H. Cohen poprosili badane osoby o słuchanie czytanego tekstu, z jednoczesnym wyobrażaniem stosunków przestrzennych dwóch różnych obiektów znajdujących się w stosunku do siebie góra – dół lub lewo – prawo; cyt.: „słoik dżemu stoi pod pudełkiem herbaty” „słoik dżemu stoi na lewo od pudełka herbaty”. Okazało się, że słowa kodujące stosunek przestrzenny w poziomie (na lewo od, na prawo od) powodowały przesunięcie oczu horyzontalnie zgodnie z opisem w tekście, zaś słowa kodujące kierunek w pionie (nad, pod) powodowały przesunięcie oczu wertykalnie zgodnie z topografią określoną w tekście. Identyczne wnioski wyciągnęli ze swoich badań Michael J. Spivey i Joy J. Geng.

Jak ważna jest rola ruchu gałek ocznych w percepcji stosunków przestrzennych dowiódł również Vezio Ruggieri prosząc badane osoby o wyobrażenie sobie biegnącego konia w płaszczyźnie horyzontalnej tła (np. z lewej do prawej) nie poruszając przy tym głową ani oczami! Ponad 1/3 badanych przyznała, że nie wykonała tego zadania. Pozostałych nie sposób zweryfikować, czy istotnie była w stanie zadanie wykonać, czy kłamała lub czy w ogóle zrozumiała, co należało zrobić. W 2006r. Roger Johansson, Jana Holsanova i Kenneth Holmqwist rejestrowali ruchy gałek ocznych osób słuchających opisu złożonej sceny przestrzennej. W wyniku odtwarzania jej w wyobraźni w trakcie słuchania, oczy badanych automatycznie podążały w kierunkach wskazywanych przez czytającego. Identyczne ruchy wykonywały oczy badanych, gdy ci mieli z pamięci (w wyobraźni) odtworzyć obrazy z czytanego wcześniej zadania.

Aż prosi się, by badania tego typu wzbogacić o jeszcze jeden wymiar. Opisane wyżej przebiegały jedynie w płaszczyźnie (dwóch kierunkach liniowych) góra – dół/lewo - prawo. Zabrakło osi tył – przód. A byłoby to bardziej miarodajne i dokładne, ponieważ w grę tu wchodzą aż dwa mierzalne parametry: ruchy gałek ocznych i zmiany wielkości źrenicy. Najłatwiej to sprawdzić, gdy poleci się badanemu wodzić oczami za oddalającym/przybliżającym się palcem badającego. Przy oddalaniu palca źrenice badanego oddalają się od siebie i rozszerzają, z kolei przy przybliżaniu palca zbliżają się do siebie i zwężają. Są to tak zwane ruchy wergencyjne (zbieżne i rozbieżne) gałek ocznych. Istnieje jeszcze jeden typ ruchów gałek ocznych, jednak w zasadzie umyka on rejestracji. Są to ruchy skrętne (w lewo i prawo), których sami możemy doświadczyć, gdy pochylamy głowę (oczywiście do pewnego stopnia) w lewo lub prawo, a pomimo przechylenia obraz świata pozostaje pionowy. Nimi jednak nie będziemy się zajmować.

Związek opisanych wyżej badań ze snem w fazie REM jest oczywisty ze względu na (mimowolny) ruch gałek ocznych. Dodatkowo, faza ta cechuje się marzeniami sennymi, dla których zjawisko ruchu i zmiany stosunków przestrzennych są równie charakterystyczne. Jest to faza snu dynamicznego i często emocjonalnego. Ponieważ ewolucja to „oszczędna matka” i nie tworzy bytów bez potrzeby, ruchy gałek ocznych w fazie REM muszą pełnić jakąś istotną rolę, w przeciwnym razie byłyby bezsensownym marnotrawieniem energii. Ponieważ sen ewidentnie wpływa na procesy konsolidacji pamięci, czego dowodem są marne wyniki przyswajania wiedzy u osób z długotrwałą deprywacją snu, zachodzi pytanie – jaki wpływ na pamięć proceduralną ma sen REM?

Pytanie jest o tyle kuszące, że faza ta w zasadzie charakteryzuje się ruchem – jego zmiennym rytmem (ruchy oczu, oddech, dynamiczna treść marzeń sennych) i jego aktywnym hamowaniem (atonia pozostałych mięśni szkieletowych)! Zapis potencjałów korowych we śnie przypomina fazę czuwania nieprzypadkowo (sen paradoksalny), a pracują wtedy wszystkie ośrodki kory, nawet ruchowe. Po co byłby ten stan aktywności, gdyby kora nie konsolidowała wtedy w pamięci nowo nabytych kompetencji ruchowych lub przemodelowywała i/lub podtrzymywała stare? Blokada na linii ośrodki ruchowe – mięśnie służy oczywiście obronie organizmu przed zrobieniem sobie/innym krzywdy i przed wystawieniem się drapieżnikowi jako ofiara, a zachwianie tego mechanizmu najlepiej widać w epizodach stanów dysocjacji u ludzi. Chociaż liczba badań nad związkiem snu REM i konsolidacją pamięci proceduralnej systematycznie rośnie, to jest w nich wiele nieścisłości, które wymagają dalszej eksploracji tej zależności (Schredl 2005).

Jeżeli jednak powyższe rozważania okazałyby się prawdą to rola ruchów oczu we śnie (i aktywności korowych pól ocznych) może sprowadzać się do kalibrowania pozostałych ruchów (aktywności pól korowych) innych mięśni używanych podczas wykonywania określonych czynności motorycznych. Model byłby taki: w dzień uczymy się nowej czynności (w sposób skoordynowany i celowy ruszamy kończynami, tułowiem, nogami i oczywiście oczami) – zaś w nocy „szlifujemy” te nowe czynności przy zablokowanych mięśniach szkieletowych, ale aktywnych mięśniach gałkowych. Za takim podejściem przemawia jeszcze jedna przesłanka. Czas fazy REM jest procentowo największy w niemowlęctwie i dzieciństwie, kiedy nabywamy zdolności ruchowe, zaś z wiekiem skraca się on (łącznie z fazą wolnofalową), by w wieku starczym, gdy nie jesteśmy w stanie nauczyć się już praktycznie żadnych nowych czynności, stanowić mniej niż 20% jakościowo gorszego (przerywanego) snu.

Jak to wszystko przekuć na model badania? Niełatwo. Mięśnie gałkoruchowe są, oprócz przepony, jedynymi, które w REM-ie są zdolne do ruchu. Jednak, o ile przy oczach otwartych (w okulografie) dokładność pomiaru można ocenić co do ułamka stopnia kątowego (rząd 0,1 stopnia kątowego), o tyle przy oczach zamkniętych (w odprowadzeniach elektrycznych ze skóry wokół oczu) dokładność jest zdecydowanie niższa (maksymalnie rząd 2 stopni kątowych). Przez to wiele drobnych ruchów gałek może zostać w ogóle niezarejestrowanych, a założenie jest przecież takie, że im precyzyjniejsze (mniejsze) ruchy kończyn/palców, tym mniejsze ruchy oczu. Dzieje się tak ze względu na różnicę potencjału rogówkowo – siatkówkowego (stałego w spoczynku gałek), którego zmiany w rejestracji przy ruchach oczu wywołują potencjały w odprowadzeniach z okolic oczu (elektrod) ze względu na oddalanie lub przybliżanie rogówki/siatkówki. A taka rejestracja jest zdecydowanie mniej dokładna niż rejestracja z obecnych na rynku kamer o wysokiej rozdzielczości. Z tego też powodu ENG (elektronystagmografia) została praktycznie wyparta z diagnostyki otoneurologicznej przez VNG (wideonystagmografię). I jest to poważna wada, jeśli chodzi o dokumentację korelacji zapisu ruchów oczu ze śnionym dynamicznie obrazem scen w fazie REM. Nie dysponujemy obecnie na tyle dokładnym rejestratorem ruchów oczu (zamkniętych), a rejestratora ruchu źrenic nie ma w ogóle. Choć są podobno pewne rasy psów śpiące z otwartymi oczami, to uzbrojenie ich do snu w aparaturę pomiarową wydaje się mrzonką.

Doświadczenie można też spróbować przeprowadzić w formie budzenia w fazie REM lub budzenia zaraz po momencie jej zakończenia. Badanego należy wypytać o treść marzeń sennych, a najdokładniej o ruch i odgrywane we śnie zmiany stosunków przestrzennych. Następnie należy porównać taki wywiad z zapisem ruchu oczu i zaobserwować lub zanegować korelację. Aparatura do takiego badania powinna być czuła i powinna rejestrować sygnał z odpowiednim wzmocnieniem. Ponieważ może się to okazać trudnym zadaniem, można przeprowadzić eksperyment niejako pośrednio. Należy badanych podzielić na dwie grupy i zlecić im naukę jakiejś czynności manualnej, najlepiej dość skomplikowanej przestrzennie. Czynność ma być na tyle trudna, by dojście do wprawy zajęło badanym około 3 dni. W tym czasie co noc należy wykonywać im polisomnografię (PSG). Warunek wstępny jest taki, że jedna grupa przed każdym snem w trakcie okresu badań, będzie miała zwiotczane mięśnie gałkoruchowe, druga zaś nie. Po tym czasie (3 dni) sprawdzamy, w której grupie nauka czynności została opanowana i na jakim jest poziomie. Jeśli ośrodki korowe ruchu oczu biorą udział w kodowaniu ruchowym organizmu (konsolidacji pamięci proceduralnej) oraz stanowią wzorzec kalibracyjny dla ośrodków ruchowych kory pozostałych mięśni – grupa zwiotczana nie powinna opanować nauki czynności lub powinna opanować ją zdecydowanie gorzej.

Zachodzi jeszcze jedna obawa. Możliwe, że badani z grupy zwiotczanej mogą samoistnie wybudzać się w fazie REM, ze względu na doświadczanie vertigo, co przywołuje z pamięci słynne doświadczenia Hermana von Helmholtza na samym sobie. Uczony ten zastosował miejscowe znieczulenie, aby sparaliżować mięśnie gałkoruchowe, a następnie próbował poruszać otwartymi oczami. Przy każdej takiej (oczywiście bezskutecznej) próbie doznawał złudzenia, że świat przemieszcza się w kierunku przeciwnym do próby poruszenia oczami (gałki przecież nie poruszały się). Podkreśla to również znaczenie ruchu oczu w percepcji równowagi. Nie można przecież zapominać, że zmysł wzroku m.in. poprzez pęczek podłużny przyśrodkowy i pokrywę, wprzęgnięty jest w układ przedsionkowo - móżdżkowy, co czyni go nie tylko detektorem świata zewnętrznego (szlak grzbietowy i brzuszny przetwarzania wzrokowego), ale też detektorem położenia obserwatora względem tego świata. To już jednak temat na inne opracowanie.


Demaris AM, Cohen BH (1998). Evidence for image scanning eye movements during transitive inference. Biological psychology, 49,229-247

Jacobson E (1932). Electrophysiology of mental activities. The American Journal of Psychology, 44, 677-694

Janczewski G (1986). Otoneurologia kliniczna, s. 197.

Johansson R, Holsanova J, Holmqwist K (2006). Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cognitive Science, 30, 1053-1079

Rugieri V (1999). The running horse stops: The hypothetical role of the eyes in imagery of movement. Peceptual and Motor Skills, 89, 1088-1092

Schredl M. (2005). REM sleep, dreaming, and procedural memory. Behavioral and Brain Sciences 28:1, 80-81

Spivey, M.J., Geng, J.J., (2001). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research, 65, 235-241

Foto: Ed, CC BY-ND 2.0

sobota, 23 marca 2013

Sen jako zjawisko lokalne



U ptaków oraz ssaków (w tym ludzi) występują trzy podstawowe stany czynnościowe układu nerwowego, które zaliczamy albo do czuwania, albo do snu NREM lub do snu REM. Bardzo popularne jest przekonanie, że organizm może znajdować się tylko w jednym z tych stanów w danym momencie. Ponadto sen jest z reguły postrzegany, w oparciu o obserwacje behawioralne i fizjologiczne, jako zjawisko globalne, dotyczące śpiącego organizmu w całości. Wystarczy jednak przypomnieć sobie, że przecież delfiny mogą spać jedną półkulą podczas gdy drugą wykorzystują do aktywnego trybu życia – jest to fakt znany powszechnie i od dawna. Ostatnio jednak pojawia się coraz więcej dowodów na to, że sen u innych zwierząt, w tym także i u człowieka, może mieć charakter zjawiska lokalnego. Upraszczając– pewne części mózgu mogą spać bardziej niż inne.

W ostatnich latach wykazano, między innymi, że lokalna aktywacja odpowiedniego obszaru mózgu, np. poprzez ruchy dłoni u ludzi, czy drgania wibrysów (wąsów) u szczurów podczas czuwania prowadzi do wzrostu aktywności EEG tych obszarów mózgu w trakcie snu wolnofalowego. Ponieważ intensywność aktywności wolnofalowej snu NREM (0.5 – 4.5 Hz) jest jak dotąd najlepiej poznanym wskaźnikiem potrzeby snu (chociaż często opiera się także na falach theta), można powiedzieć, że eksploatowane bardziej obszary kory potrzebowały go więcej. Stymulacja sensoryczna szczurzych wibrysów prowadzi też do powstania lokalnych potencjałów polowych, które charakteryzują się albo niską, albo wysoką amplitudą. Najprawdopodobniej fluktuacje te odzwierciedlają różnice w lokalnych stanach funkcjonalnych w obrębie grupy ściśle powiązanych ze sobą neuronów, tworzących tzw. kolumny korowe. Wysokoamplitudowe odpowiedzi występują najczęściej podczas snu NREM i wydają się reprezentować stan podobny do snu, podczas gdy niskoamplitudowe potencjały wskazywałyby na stan podobny do czuwania. Co najważniejsze, fluktuacje amplitudy tych potencjałów są w pewnym stopniu niezależne od aktualnego stanu czynnościowego szczura (nieważne czy zwierzę śpi czy nie) i mogą się różnic pomiędzy obiema półkulami, a nawet pomiędzy sąsiadujących kolumnami korowymi. Wygląda to więc tak, jakby jedne kolumny korowe spały podczas gdy inne – nie.

Również u szczurów, które pozostawały dłużej niż zwykle w stanie czuwania, podejmując się zadań polegających na poznawaniu nowych obiektów i ćwiczeniu nowych zdolności, niektóre neurony korowe przechodziły do trybu off-line, zachowując się tak, jak zwykle zachowują się podczas gdy zwierzę śpi. Te okresy aktywności off-line były miejscowe i wiązały się z aktywnością EEG fal wolnych/theta (2-6 Hz), a także częstotliwość ich występowania była skorelowana z czasem jaki zwierze poświęcało wykonywanym zadaniom. Co więcej kiedy aktywność off-line miała miejsce w czasie kiedy zwierzę wykonywało jakieś konkretne zadanie, częściej wykonywało je błędnie. Mimo to, podczas stanów tej aktywności szczury wydawały się być całkowicie obudzone a całościowe EEG zarejestrowane z powierzchni czaszki zwierzęcia ukazało niskonapięciową, szybką aktywność charakterystyczną dla stanu czuwania.

Ostatnie badania, wykonane pod kierunkiem wybitnego neurobiologa Giulio Tononi, pokazały, że również u ludzi wydłużony okres czuwania prowadzi do zależnych od wykonywanych czynności, lokalnych zmian w aktywności EEG. Uczestnicy badania pozostawali w stanie czuwania powyżej 24 godzin (maksymalnie do 36h) i w tym czasie byli proszeni o wykonanie jednego z dwóch zadań: słuchania audiobooka (zadanie językowe) oraz jazdy na symulatorze samochodowym (zadanie wzrokowo-ruchowe). Zadanie wykonywano kilkakrotnie i po każdej sesji, a także przed pierwszym zadaniem oraz podczas następującego potem snu przeprowadzono rejestrację sygnału hd-EEG. Tak dobrano zadania, aby angażowały one odmienne funkcjonalnie i anatomicznie obwody neuronalne, w tym wypadku lewy czołowo-skroniowy obszar kory dla zadania językowego, oraz wzrokowo-ciemieniowe obszary dla zadania wzrokowo-ruchowego.

Zgodnie z przewidywaniami badaczy, w obu przypadkach całościowa analiza EEG wykazała wzrost aktywności theta (5-9 Hz) pod koniec 24-godzinnego okresu czuwania, której towarzyszyły behawioralne oznaki potrzeby snu. Udział w obu typach zadań wpływał na wydłużenie czasu snu, w szczególności fazy snu wolnofalowego (N3) oraz fazy REM. Przeprowadzona podczas snu analiza topograficzna wykazała z kolei nieproporcjonalny do reszty kory wzrost mocy fal o częstotliwości 1-11 Hz nad obszarem lewej kory czołowej w zadaniu językowym, oraz nad obszarami ciemieniowymi w zadaniu wzrokowo-ruchowym, przy czym różnice te osiągnęły największy zakres podczas trzeciego epizodu snu NREM. Wykazano także, że za pomocą analizy lokalnych zmian fal theta podczas stanu czuwania można przewidzieć wzmożoną aktywność tych samych obszarów podczas następującego po nim snu (korelacja na poziomie 0.61).

Wyniki powyższych badań pokazują, że deprywacja od snu może prowadzić do pojawienia się pewnej formy dysocjacji sen-czuwanie, w której okresy podobne do snu, będące pochodną poprzedzającej go aktywności, pojawiają się lokalnie w mózgu, który generalnie znajduje się w stanie czuwania. Jak zauważają autorzy, sen i czuwanie stanowią element kontinuum, w którym przejścia pomiędzy tymi stanami odzwierciedlają ilościowe i przestrzenne zmiany miejscowych zmian aktywności.



Hung CS, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C, & Tononi G (2013). Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep, 36 (1), 59-72 PMID: 23288972

Vassalli A, & Dijk DJ (2009). Sleep function: current questions and new approaches. The European journal of neuroscience, 29 (9), 1830-41 PMID: 19473236


czwartek, 20 grudnia 2012

Wpływ przezczaszkowej stymulacji prądem stałym na marzenia senne


Przezczaszkowa stymulacja prądem stałym tDCs (ang. transcranial direct current stimulation) polega na przykładaniu do głowy elektrod skórnych, przez które płynie prąd o natężeniu ok. 1 – 2 mA. Stymulujące działanie tDCs polega na tym, że prąd ten wytwarza stałe pole elektryczne, które zwiększa częstotliwości wyładowania neuronów kory, znajdujących się w zasięgu elektrody dodatniej – anody. Z kolei działanie katody (elektrody ujemnej) wpływa na zmniejszenie częstotliwości wyładowań neuronów znajdujących się pod nią. Pomimo bardzo słabego prądu stosowanego w tej metodzie stymulacji (do tkanki nerwowej dociera prąd rzędu zaledwie kilku-kilkudziesięciu mikroamperów), obserwuje się jej skuteczne działanie w poprawie różnych funkcji mózgu, a na poziomie neurofizjologicznym stymulacja ta faktycznie wywołuje zmiany w miejscowym przepływie krwi mózgowej (utożsamianym ze zmianami aktywności danego obszaru mózgu). Część tych obserwacji pochodzi z badań, podczas których z powodzeniem stymulowano grzbietowo-boczną korę przedczołową (DLPFC), której aktywacja podczas snu REM wiązana jest pojawieniem się świadomego snu.

Metoda tDCs szybko zyskała więc sympatię badaczy świadomego śnienia – zarówno amatorów, jak i prawdziwych naukowców. Póki co jednak nie wykorzystano tDCs do indukcji świadomych snów, chociaż istnieją duże szanse na to, że badania takie są obecnie prowadzone. W 2010 roku na łamach International Journal of Dream Research Ahmed Karim z Uniwersytetu z Tybindze (Niemcy) zapowiadał, że niedługo opublikowane zostaną wyniki prac nad zastosowaniem tDCs w badaniach nad śnieniem. W tym samym numerze wraz z Valdasem Noreiką z Uniwersytetu w Turku (Finlandia) proponowali zastosowanie tej metody do stymulacji DLPFC w celu indukcji świadomych snów. I chociaż to po nich można było się spodziewać pierwszych doniesień na temat wpływu tDCS na sny, uprzedzili ich inni badacze, z Australii. 


Aparat do stymulacji tDC, źródło: medcat.nl

Russel Conduit wraz ze współpracownikami z Monash University w Melbourne sprawdzali wpływ przezczaszkowej stymulacji prądem stałym na treść marzeń sennych podczas różnych etapów snu. Jako cel stymulacji wybrano korę czołową oraz prawą korę ciemieniową ze względu na łatwą dostępność dla pola elektrycznego (w przeciwieństwie do położonych głębiej elementów układu limbicznego i pnia mózgu), większe zaangażowanie prawej półkuli w zadania wzrokowo-przestrzenne, a także to, że obszary te uważa się za szczególnie ważne w procesach śnienia, co wiadomo na podstawie badań lezji (uszkodzenia tych obszarów mogą prowadzić do całkowitego zaniku występowania marzeń sennych) oraz niektórych badań neuroobrazowych. Okazało się wówczas, że podczas stadium 2 snu NREM zastosowanie stymulacji obszaru tylnej kory ciemieniowej (anoda: P4, katoda znajdowała się nad korą czołową, Fpz) wywoływało częstsze marzenia senne o charakterze wzrokowym, w porównaniu z kontrolą (którą był brak stymulacji stałoprądowej lub odwrócenie polarności elektrod). Te same warunki stymulacji, jednak zastosowane podczas snu głębokiego (stadium 3 snu NREM), nie dawały już żadnych widocznych efektów. Chociaż oba badania dotyczyły snu NREM, poszczególne jego fazy różnią się znacznie pod względem fizjologicznym, co częściowo może tłumaczyć zaistniałą sytuację. Możliwe jest, że zaaplikowany prąd o natężeniu 2 mA jest za słaby, aby doprowadzić do depolaryzacji neuronów tych obszarów kory, które podczas snu głębokiego wykazują najniższy poziom aktywacji.

W kolejnym badaniu postanowiono sprawdzić jak stymulacja tDC będzie wpływać na marzenia senne podczas fazy REM. Ponieważ w fazie tej marzenia senne występują licznie i są pełne halucynacji wzrokowych, postanowiono zamienić elektrody miejscami, aby wywołać hamowanie aktywności tylnej kory ciemieniowej i pobudzenie kory czołowej. Spodziewano się, że tak zastosowana stymulacja tDC doprowadzi do spadku częstotliwości i jakości marzeń sennych. Podobnie jednak jak w przypadku poprzedniego badania, nie zaobserwowano różnic w opisie marzeń sennych zarówno w warunkach stymulacji jak i kontroli. Możliwe więc, że i tu prąd 2mA okazał się za słaby aby, tym razem, przyhamować neurony kory ciemieniowej. Nie zaobserwowano też żadnego wpływu pobudzenia kory czołowej na marzenia senne – w tym na pojawienie się świadomości we śnie, jednak w tym przypadku anoda nie znajdowała się nad obszarem DLPFC, lecz nad centralną częścią kory nadoczodołowej.

Ci, których ciekawi czy i w jaki sposób zastosowanie tDCs może wpływać na indukcję świadomego śnienia, będą zapewne jeszcze musieli poczekać. Nie wszyscy jednak są obdarzeni cierpliwością i wolą brać sprawy w swoje ręce. Podczas gdy w czasopismach naukowych pojawiały się kolejne artykuły wykazujące skuteczność metody tDCs, w sieci zaczęły się pojawiać projekty typu open-tDCs czy DIY-tDCs pozwalające niemal każdej osobie, przy minimalnym wkładzie finansowym (kilkanaście-kilkadziesiąt złotych) i z niewielkim doświadczeniem w elektronice, na skonstruowanie własnego aparatu do stymulacji prądem stałym w domowym warsztacie. Budowanie takiego urządzenia na własną rękę jest o tyle kuszące, że w porównaniu z ceną urządzenia certyfikowanego, spełniającego wszelkie normy umożliwiające wykorzystanie go do badań naukowych lub terapii, koszty są naprawdę niskie (ceny takich stymulatorów do zastosowań biomedycznych zaczynają się od kilku-kilkunastu tysięcy złotych). Pojawia się jednak problem bezpieczeństwa, bo chociaż prąd stosowany w stymulacji tDC ma niskie natężenie i w teorii wydaje się bezpieczny, to w rzeczywistości istnieją jeszcze inne czynniki, które mogą sprawić, że ryzyko uszkodzenia zdrowia podczas eksperymentowania na sobie znacznie wzrasta.

Niemniej jednak ciekaw jestem jak będzie rozwijał się projekt prowadzony od pewnego czasu przez ludzi z brmlab. Jednym z przedsięwzięć tego czeskiego hackerspace z Pragi jest właśnie indukcja świadomego śnienia za pomocą tDCs poprzez stymulację DLPFC. Obecnie prace, będące częścią większego projektu dotyczącego świadomego śnienia, utknęły na etapie budowy ulepszonej wersji aparatu do tDCs oraz opracowywania automatycznej detekcji fazy REM na podstawie zmian częstotliwości bicia serca. Warto wspomnieć, że ekipie z brmlab udało się też już wysłać sygnał EOG ze snu do laboratorium, pomimo, że korzystają oni z bardzo prostego, często własnoręcznie zrobionego lub zmodyfikowanego sprzętu.

Chociaż istnieją różne inne techniki stymulacji mózgu, przezczaszkowa stymulacja prądem stałym ma wiele zalet, gdyż jest nieinwazyjna, tania, bezgłośna (w przeciwieństwie do np. przezczaszkowej stymulacji magnetycznej, TMS) i wygodna. Ma jednak też pewne wady, o których warto mieć pojęcie, jeżeli planuje się jej wykorzystanie w przyszłości. Głównym minusem tDCs jest jej mała rozdzielczość przestrzenna, która w przypadku stymulacji małych obszarów kory może stanowić poważną przeszkodę. Na szczęście DLPFC jest stosunkowo sporym obszarem i cecha ta nie powinna zbytnio przeszkadzać. Inna sprawa to to, że aby uzyskać pożądany efekt poznawczy, proces stymulacji powinien trwać kilkanaście-30 minut. W przypadku stymulacji osoby śpiącej ryzykujemy tym, że może się ona obudzić w trakcie tak długiego okresu i wtedy próba zostanie zmarnowana. Kolejną ważną kwestią jest to, że tDCs wymaga stosowania jednocześnie dwóch elektrod: stymulującej anody oraz hamującej aktywność neuronów katody. Zgodnie z hipotezą o aktywacji DLPFC w świadomym śnie nie ulega wątpliwości, że anodę powinno się umieścić nad tym obszarem. Problemem może być jednak wybranie miejsca dla umiejscowienia katody. Hipotetycznie mógłby to być obszar (najlepiej stosunkowo duży), skorelowany ujemnie ze świadomością podczas snu, tzn. taki, którego aktywność spada z początkiem świadomego śnienia. Póki co, niestety nie wiadomo, czy taki obszar w ogóle istnieje.

Jeżeli okazałoby się, że przezczaszkowa stymulacja prądem stałym może z dużą skutecznością prowadzić do wystąpienia świadomego snu, otrzymalibyśmy potężne narzędzie, które w znacznym stopniu ułatwiłoby prowadzenie badań nad tym zjawiskiem. Obecnie, głównym ograniczeniem w prowadzeniu tego typu badań (obok oczywistych problemów finansowych) jest właśnie brak skutecznych metod indukowania świadomych snów. Być może rozwiązanie to zostałoby wykorzystane również w komercyjnych urządzeniach do indukcji świadomych snów (REM-dreamer oparty na tDCs) dostępnych dla przeciętnych użytkowników lubiących eksperymentować ze swoimi snami. Czas jednak pokaże kiedy i czy w ogóle takie zastosowanie tej technologii będzie możliwe, a póki co pozostają nam testy rzeczywistości i pobudki o czwartej nad ranem....


Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Théoret H, Boggio PS, & Fregni F (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27 (23), 6212-8 PMID: 17553993

Jakobson AJ, Conduit RD, Fitzgerald PB. (2012). Investigation of visual dream reports after transcranial direct current stimulation (tDCS) during REM sleep. International Journal of Dream Research, 5 (1), 87-93

JAKOBSON, A., FITZGERALD, P., CONDUIT, R. (2012). Investigation of dream reports after transcranial direct current stimulation (tDCs) during slow wave sleep (SWS) Sleep and Biological Rhythms, 10 (3), 169-178 DOI: 10.1111/j.1479-8425.2012.00538.x

JAKOBSON, A., FITZGERALD, P., CONDUIT, R. (2012). Induction of visual dream reports after transcranial direct current stimulation (tDCs) during Stage 2 sleep Journal of Sleep Research, 21 (4), 369-379 DOI: 10.1111/j.1365-2869.2011.00994.x

Karim AA. (2010). Transcranial cortex stimulation as a novel approach for probing the neurobiology of dreams: Clinical and neuroethical implications. International Journal of Dream Research, 3 (1), 17-20

Noreika V, Windt JM, Lenggenhager B, Karim AA. (2010). New perspectives for the study of lucid dreaming: From brain stimulation to philosophical theories of self-consciousness. International Journal of Dream Research, 3 (1), 36-45

Voss U, Holzmann R, Tuin I, & Hobson JA (2009). Lucid dreaming: a state of consciousness with features of both waking and non-lucid dreaming. Sleep, 32 (9), 1191-200 PMID: 19750924

Zheng X, Alsop DC, & Schlaug G (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage, 58 (1), 26-33 PMID: 21703350

Zyss T. (2010). Przezczaszkowa stymulacja stałoprądowa tDCS i inne pokrewne techniki w terapii zaburzeń psychicznych. Psychiatria Polska, 44 (4), 505-518

Foto: Day DonaldsonCC BY 2.0



Liczba wyświetleń

Creative Commons License
Treść bloga jest dostępna na licencji Creative Commons Attribution-NonCommercial 2.0 Generic License

Copyright © Lucidologia Published By Gooyaabi Templates | Powered By Blogger

Design by Anders Noren | Blogger Theme by NewBloggerThemes.com